CONGENITAL ANOMALIES IN VICTORIA 2007–2009

CONGENITAL ANOMALIES IN VICTORIA 2007–2009

To receive this publication in an accessible format phone +61 03 9096 2729, using the National Relay Service 13 36 77 if required, or email clinical.councils@dhhs.vic.gov.au

Authorised and published by the Victorian Government, 1 Treasury Place, Melbourne.

© State of Victoria, Department of Health and Human Services, January 2017.

ISSN 2207-2764 (pdf/online)

Where the term 'Aboriginal' is used it refers to both Aboriginal and Torres Strait Islander people. Indigenous is retained when it is part of the title of a report, program or quotation.

Available at https://www2.health.vic.gov.au/hospitals-and-health-services/quality-safety-service/ consultative-councils/council-obstetric-paediatric-mortality/congenital-anomalies-register

(1701001)

Recommended citation:

Victorian Congenital Anomalies Register. Congenital anomalies in Victoria 2007–2009. Melbourne: Consultative Council on Obstetric and Paediatric Mortality and Morbidity (CCOPMM), 2017

Acknowledgements

This report would not have been possible without the particular assistance of:

- midwives in Victoria who provided notification of congenital anomalies on the birth report form or the hospital's electronic system to the Victorian Perinatal Data Collection (VPDC)
- maternal and child health nurses who completed and returned the Birth Defect Notification forms health information managers at all hospitals with maternity services and, in particular, those at hospitals with paediatric services
- The Royal Children's Hospital Health Information Management, Information Technology, Cardiology Unit, Orthopaedic Unit
- The Royal Women's Hospital Health Information Management, Information Technology, Fetal Diagnostic Unit, Ultrasound Department
- Monash Medical Centre Health Information Management, Ultrasound Department and Genetics Clinic, Information Technology
- Genetic Health Services Victoria, Murdoch Childrens Research Institute
- Melbourne Pathology and Cytogenetic Services Victoria.

We thank all of the above for their contributions.

Contents

List of Tables	v
List of Figures	vii
1. Executive summary	1
2. Introduction	2
2.1 Congenital anomalies reported by the Victorian Congenital Anomalies Register	2
2.2 About this report	2
3. Methodology	3
3.1 Sources of notifications	3
3.2 Data items	4
3.3 Data quality	4
3.4 Data analysis	4
4. Findings	5
4.1 Incidence of congenital anomalies in Victoria	5
4.2 Congenital anomaly trends, 1983 to 2009	5
4.3 Comparison of congenital anomalies in Victoria with other states and territories of Australia	6
4.4 Congenital anomalies by body systems	8
4.5 Congenital anomalies by diagnostic category	9
4.6 Congenital anomalies by child characteristics	10
4.6.1 Gender	10
4.6.2 Gestational age	10
4.6.3 Birth weight	11
4.6.4 Birth plurality	11
4.6.5 Perinatal outcomes	11
4.7 Congenital anomalies by maternal characteristics	12
4.7.1 Age	12
4.7.2 Aboriginal women	12
4.7.3 Parity	12
4.7.4 Country of birth	12
4.8 Selected major congenital anomalies	14
4.8.1 Anencephaly	14
4.8.2 Spina bifida	15
4.8.3 Encephalocele	16
4.8.4 All neural tube defects	17

References	56
Definitions	55
Appendix E: Outcomes of selected major congenital anomalies, 2007–2009	54
Appendix D: Congenital anomalies by year, 1983–2009	53
Appendix C: Routine data items in the Victorian Congenital Anomalies Register	52
Appendix B: Excluded congenital anomalies	51
Appendix A: Major congenital anomalies in Victoria, 2007–2009	43
4.8.29 Trisomy 18	42
4.8.28 Trisomy 13	41
4.8.27 Trisomy 21	40
4.8.26 Gastroschisis	39
4.8.25 Exomphalos	38
4.8.24 Diaphragmatic hernia	37
4.8.23 Limb reduction defects	36
4.8.22 Developmental dysplasia of the hip	35
4.8.21 Obstructive defects of the renal pelvis	34
4.8.20 Cystic kidney disease	33
4.8.19 Renal agenesis and dysgenesis	32
4.8.18 Hypospadias	31
4.8.17 Anorectal atresia and/or stenosis	30
4.8.16 Small intestinal atresia and/or stenosis	29
4.8.15 Oesophageal atresia and/or stenosis	28
4.8.14 Cleft lip and palate	27
4.8.13 Cleft lip	26
4.8.12 Cleft palate	25
4.8.11 Coarctation of the aorta	24
4.8.10 Hypoplastic left heart syndrome	23
4.8.9 Ventricular septal defect	22
4.8.8 Tetralogy of Fallot	21
4.8.7 Transposition of the great vessels	20
4.8.6 Hydrocephalus	19
4.8.5 Microcephalus	18

List of tables

Table 1: Sources of notifications, 2007–2009	3
Table 2: Comparison of major congenital anomalies reporting by Australian states and territories	7
Table 3: Order of incidence of selected congenital anomalies, 2007–2009	9
Table 4: Congenital anomalies by gestational age, 2007–2009	10
Table 5: Congenital anomalies by birth weight, 2007–2009	11
Table 6: Congenital anomalies by mother's age, 2007–2009	12
Table 7: Congenital anomalies by mother's country of birth, 2007–2009	13
Table 8: Anencephaly by selected maternal and child characteristics, 2007–2009	14
Table 9: Spina bifida by selected maternal and child characteristics, 2007–2009	15
Table 10: Encephalocele by selected maternal and child characteristics, 2007–2009	16
Table 11: All neural tube defects by selected maternal and child characteristics, 2007–2009	17
Table 12: Microcephalus by selected maternal and child characteristics, 2007–2009	18
Table 13: Hydrocephalus by selected maternal and child characteristics, 2007–2009	19
Table 14: Transposition of the great vessels by selected maternal and child characteristics, 2007–2009	ə 20
Table 15: Tetralogy of Fallot by selected maternal and child characteristics, 2007–2009	21
Table 16: Ventricular septal defect by selected maternal and child characteristics, 2007–2009	22
Table 17: Hypoplastic left heart syndrome by selected maternal and child characteristics, 2007–2009	23
Table 18: Coarctation of the aorta by selected maternal and child characteristics, 2007–2009	24
Table 19: Cleft palate by selected maternal and child characteristics, 2007–2009	25
Table 20: Cleft lip by selected maternal and child characteristics, 2007–2009	26
Table 21: Cleft lip and palate by selected maternal and child characteristics, 2007–2009	27
Table 22: Oesophageal atresia and/or stenosis by selected maternal and child characteristics, 2007–2009	28
Table 23: Small intestinal atresia and/or stenosis by selected maternal and child characteristics, 2007–2009	29
Table 24: Anorectal atresia and/or stenosis by selected maternal and child characteristics, 2007–2009	30
Table 25: Hypospadias by selected maternal and child characteristics, 2007–2009	31
Table 26: Renal agenesis and dysgenesis by selected maternal and child characteristics, 2007–2009	32
Table 27: Cystic kidney disease by selected maternal and child characteristics, 2007–2009	33
Table 28: Obstructive defects of the renal pelvis by selected maternal and child characteristics, 2007–2009	34

Table 29: Developmental dysplasia of the hip by selected maternal and child characteristics,	
2007–2009	35
Table 30: Limb reduction defects by selected maternal and child characteristics, 2007–2009	36
Table 31: Diaphragmatic hernia by selected maternal and child characteristics, 2007–2009	37
Table 32: Exomphalos by selected maternal and child characteristics, 2007–2009	38
Table 33: Gastroschisis by selected maternal and child characteristics, 2007–2009	39
Table 34: Trisomy 21 by selected maternal and child characteristics, 2007–2009	40
Table 35: Trisomy 13 by selected maternal and child characteristics, 2007–2009	41
Table 36: Trisomy 18 by selected maternal and child characteristics, 2007–2009	42

List of figures

Figure 1: Congenital anomalies notifications and cases in Victoria, 2007–2009	3
Figure 2: Incidence of congenital anomalies per 1,000 pregnancies, 2007–2009	5
Figure 3: Incidence of congenital anomalies, 1983 to 2009	5
Figure 4: Congenital anomalies in Victoria compared to other states and territories in Australia	6
Figure 5: Relative proportion of individual congenital anomalies (not cases) by body systems 200)7–2009 8
Figure 6: Congenital anomalies by gender, 2007–2009	10
Figure 7: Anencephaly per 1,000 pregnancies, 1998 to 2009	14
Figure 8: Spina bifida per 1,000 pregnancies, 1998 to 2009	14
Figure 9: Encephalocele per 1,000 pregnancies, 1998 to 2009	16
Figure 10: All neural tube defects per 1,000 pregnancies, 1998 to 2009	17
Figure 11: Microcephalus per 1,000 pregnancies, 1998 to 2009	18
Figure 12: Hydrocephalus per 1,000 pregnancies, 1998 to 2009	19
Figure 13: Transposition of the great vessels per 1,000 pregnancies, 1998 to 2009	20
Figure 14: Tetralogy of Fallot per 1,000 pregnancies, 1998 to 2009	21
Figure 15: Ventricular septal defect per 1,000 pregnancies, 1998 to 2009	22
Figure 16: Hypoplastic left heart syndrome per 1,000 pregnancies, 1998 to 2009	23
Figure 17: Coarctation of the aorta per 1,000 pregnancies, 1998 to 2009	24
Figure 18: Cleft palate per 1,000 pregnancies, 1998 to 2009	25
Figure 19: Cleft lip per 1,000 pregnancies, 1998 to 2009	26
Figure 20: Cleft lip and palate per 1,000 pregnancies, 1998 to 2009	27
Figure 21: Oesophageal atresia and/or stenosis per 1,000 pregnancies, 1998 to 2009	28
Figure 22: Small intestinal atresia and/or stenosis per 1,000 pregnancies, 1998 to 2009	29
Figure 23: Anorectal atresia and/or stenosis per 1,000 pregnancies, 1998 to 2009	30
Figure 24: Hypospadias per 1,000 pregnancies, 1998 to 2009	31
Figure 25: Renal agenesis and dysgenesis per 1,000 pregnancies, 1998 to 2009	32
Figure 26: Cystic kidney disease per 1,000 pregnancies, 1998 to 2009	33
Figure 27: Obstructive defects of the renal pelvis per 1,000 pregnancies, 1998 to 2009	34
Figure 28: Developmental dysplasia of the hip per 1,000 pregnancies, 1998 to 2009	35
Figure 29: Limb reduction defects per 1,000 pregnancies, 1998 to 2009	36
Figure 30: Diaphragmatic hernia per 1,000 pregnancies, 1998 to 2009	37
Figure 31: Exomphalos per 1,000 pregnancies, 1998 to 2009	38
Figure 32: Gastroschisis per 1,000 pregnancies, 1998 to 2009	39
Figure 33: Trisomy 21 per 1,000 pregnancies, 1998 to 2009	40

Figure 34: Trisomy 13 per 1,000 pregnancies, 1998 to 2009	41
Figure 35: Trisomy 18 per 1,000 pregnancies, 1998 to 2009	42

1. Executive summary

The prevention and management of congenital abnormalities in the community relies on population level surveillance and research into the aetiology, diagnosis and prevention of such conditions. Congenital abnormalities are an important cause of child death and disability and are a leading cause of perinatal mortality in Australia¹, affecting 3.1 per cent of all births².

Though the causes of congenital anomalies are unknown in half of all the cases, the factors that contribute to congenital anomalies include genetic factors, socio-demographic factors (such as ethnicity, maternal age, and socioeconomic status), environmental factors like maternal exposure to alcohol, medications, chemicals, radiation and tobacco during pregnancy, infections like syphilis, rubella and zika virus, maternal nutritional status (such as folate deficiency), obesity and pre-gestational diabetes.

The Consultative Council on Obstetric and Paediatric Mortality and Morbidity (CCOPMM), has legislative responsibility to monitor the health outcomes of mothers and babies, and is an expert advisory body to the Victorian Government. CCOPMM maintains the Victorian Congenital Anomalies Register (VCAR) to provide ongoing health surveillance of major congenital anomalies in Victoria. The VCAR also provides data for epidemiological research and for investigations into potential clusters of congenital anomalies.

This report highlights the incidence (new cases of major congenital anomalies), trends and risk of major congenital anomalies in Victoria from 2007 to 2009. Selected congenital anomalies that are either 'lethal', have significant consequences for surviving children and their families, or are relatively common^{2,3}, are reported in detail.

The reporting of congenital anomalies varies across Australian states and territories with respect to scope (age limits) and the calculation of rates. Despite these differences, congenital anomaly rates in Victoria during the reporting period were consistent with national data.

The long term trend in rates of abnormalities largely reflect the incremental improvement in the ascertainment, identification and notification of congenital anomalies (from 2.7 per cent in 1983 to 4.2 per cent in 2009). Other factors associated with the rates over time include an increase in the maternal age at birth and the prevalence of chronic conditions like pre-gestational diabetes.

The main findings for the reporting period are:

- Incidence and pregnancies affected: Congenital anomalies affected 4.3 per cent of reported pregnancies, a slight increase from the rate of 4.2 percent in 2005 and 2006. In Victoria, the baby had one or more congenital anomalies in one in 25 pregnancies. Among congenital anomaly cases, 22.6 per cent of babies were reported to have had more than one congenital anomaly.
- Most common congenital anomalies: By diagnostic category, hypospadias (abnormality of the urethral opening in males) was the most common congenital anomaly, followed by obstructive defects of the renal pelvis, and trisomy 21 (Down's syndrome), affecting one in 123, 230 and 297 pregnancies between 2007 and 2009 respectively.
- Preterm birth: Babies with a congenital anomaly were 2.6 times more likely to be born preterm (birth before 37 weeks gestation) than babies without a congenital anomaly.
- Risk of perinatal mortality^{*}: The risk of perinatal mortality was three times higher for babies with a congenital anomaly, compared to babies without a congenital anomaly.
- Maternal age: Women aged 35 years and older were 16.0 per cent more likely to have a baby with a congenital anomaly than those younger than 35 years of age.
- Mother's country of birth: Babies of women born in the Middle East were 27.0 per cent more likely to develop a congenital anomaly than babies of women born in Australia and other countries.

* Excludes termination of pregnancy

2. Introduction

The Victorian Congenital Anomalies Register (VCAR), formerly known as the Victorian Birth Defects Register was established in 1982 under the *Health Act 1981*^{4–9}. The VCAR is a legislative responsibility of the Consultative Council on Obstetric and Paediatric Mortality and Morbidity (CCOPMM). The VCAR is a statewide population-based surveillance system, which aims to provide statistical information on the prevalence of congenital anomalies in Victoria. Data from the VCAR data can assist with:

- planning and provision of healthcare for people with congenital anomalies
- provision of advice to the community/families who are concerned about having a baby with a congenital anomaly
- epidemiological research to increase knowledge in the aetiology and preventability of congenital anomalies
- assessing the effectiveness of primary prevention and screening programs
- responding to concerns about potential clusters or trends in congenital anomalies

2.1 Congenital anomalies reported by the Victorian Congenital Anomalies Register

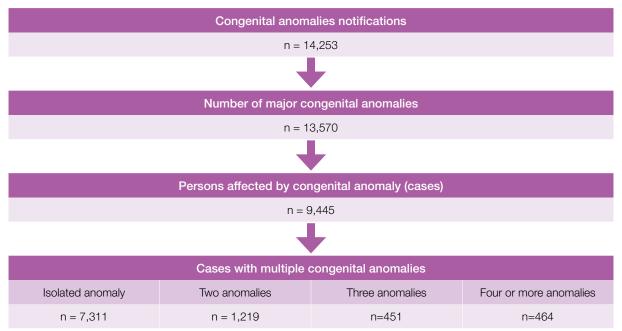
A 'congenital anomaly' (also called a 'birth defect', 'congenital malformation' or 'congenital disorder'), is any abnormality of prenatal origin, either present after conception or occurring before the end of pregnancy. This includes structural, functional, genetic, chromosomal and biochemical abnormalities, and can be detected before birth, at birth or in later years of life¹⁰.

The VCAR contains information on congenital anomaly outcomes in Victoria; from pregnancy[†] through to children up to 17 completed years of age.

2.2 About this report

This report focuses on major congenital anomalies, which have significant medical, social or cosmetic consequences, typically require a medical intervention and are responsible for most of the deaths, morbidity and disability related to congenital anomalies. These are shown in Appendix A.

Minor congenital anomalies (structural changes without significant health, social or cosmetic consequences) have been excluded from this report. Minor congenital anomalies have mainly been derived from the 'external minor congenital anomalies list' provided by the World Health Organization, United States Centers for Disease Control and Prevention and The International Clearinghouse for Birth Defects Surveillance and Research (ICBDSR)¹¹, shown in Appendix B.


3. Methodology

3.1 Sources of notifications

For the period 2007 to 2009, there were 14,253 notifications of congenital anomalies (Figure 1) for a total of 9,445 cases (excluding notifications for isolated minor congenital anomalies as provided in Appendix B). This approximates to an average of 1.5 notifications per child affected by major congenital anomaly (cases).

The sources of notifications are shown in Table 1.

Figure 1: Congenital anomalies notifications and cases in Victoria, 2007–2009

Table 1: Sources of notifications, 2007–2009

Notification source	Number	Percentage (%)
Hospital sources	5,866	41.2
Victorian perinatal data collection (VPDC) – birth forms	4,960	34.8
Cytogenetic reports	1,405	9.9
Perinatal death certificates	842	5.9
Maternal and child health nurses	629	4.4
Autopsy reports	376	2.6
Other professionals	170	1.2
Unknown	4	0.0
Other (e.g. parent)	1	0.0
Total*	14,253	100.0

* Excludes the 1,335 notifications for isolated minor anomalies not included in this report.

3.2 Data items

All notifications of congenital anomalies (excluding terminations of pregnancy before 20 weeks gestation and interstate births) are subsequently linked to the Victorian Perinatal Data Collection (VPDC) to obtain the obstetric history for each case.

Health services and maternity care providers must provide data to the VPDC for every birth in Victoria. The routinely collected data items included in the VCAR are listed in Appendix C, with additional data items available for each case over 20 weeks' gestation as reported in the VPDC¹².

3.3 Data quality

Data submitted to the VPDC and the VCAR are checked for completeness and validity. Inconsistent or incomplete data is rectified by sending a query to the hospital of birth, or home birth practitioner. Further data cleaning is carried out when all data for the calendar year has been submitted. Validation activities to assess, maintain and improve the quality of the data provided by hospitals to the VPDC and the VCAR are an ongoing commitment of the Department of Health and Human Services (DHHS).

Projects designed to determine the accuracy and completeness of the data submitted to the VPDC and the VCAR are undertaken periodically^{13–17}, however it is acknowledged that this should be undertaken more regularly. Identification of congenital anomalies can be challenging for termination of pregnancy cases less than 20 weeks gestation¹⁶.

3.4 Data analysis

The 2007–2009 Victorian congenital anomaly rates are reported per 1,000 pregnancies[‡] for:

- all major congenital anomalies
- major congenital anomalies by maternal and child characteristics
- major congenital anomalies by diagnostic categories.

Trends of major congenital anomalies are reported as well as findings on 29 selected major congenital anomalies considered to be 'lethal, have significant consequences for surviving children and their families, or are relatively common^{2,3} by rate, trends and selected maternal and child characteristics.

Relative risk (RR) and its 95 per cent confidence intervals (CI) have been calculated to measure the association of maternal and child characteristics with all congenital anomalies and selected anomalies. A p-value of less than 0.05 was considered significant.

4. Findings

4.1 Incidence of congenital anomalies in Victoria

In 2007–2009, 4.3 per cent of reported pregnancies (one in 25) were affected by one or more congenital anomalies. The yearly incidence of congenital anomalies is depicted in Figure 2. The five-year (2005 to 2009) incidence of congenital anomalies was 43.4 per 1,000 pregnancies.

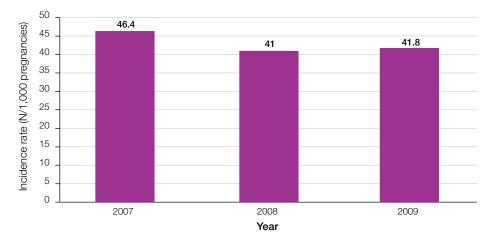


Figure 2: Incidence of congenital anomalies per 1,000 pregnancies, 2007–2009

4.2 Congenital anomaly trends, 1983 to 2009

Due to a gradual improvement in ascertainment, identification and notification of congenital anomalies, the incidence of congenital anomalies increased from 2.7 per cent in 1983 to 4.2 per cent in 2009. (Figure 3 and Appendix D). National data on congenital anomalies, available for 1981 to 2003¹⁸, depicted a rise from 1.6 per cent between 1981–1992¹⁹ to 3.1 per cent in 2002–03².

Other factors associated with this rise in incidence include increased numbers of women with advanced maternal age and the prevalence of chronic conditions, such as pre-gestational diabetes.

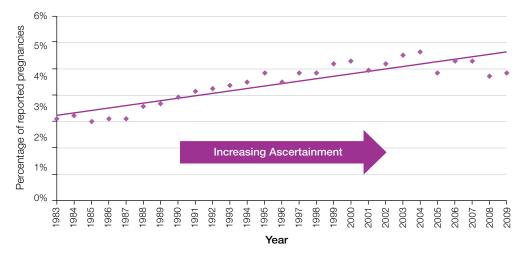



Figure 3: Incidence of congenital anomalies, 1983 to 2009

4.3 Comparison of congenital anomalies in Victoria with other states and territories of Australia

Congenital anomalies in Victoria from 2007 to 2009 were reported in 4.3 per cent of all pregnancies, which is comparable to the national incidence (3.1 per cent)². The national, state and territory incidence of congenital anomaly is shown in Figure 4 based on data for 2007–2009 or latest available data to 2009.

There is variability among states and territories in the scope of data collection for congenital anomalies, definitions and classifications, denominator selection, sources of notifications and resources for surveillance that impact on the ability to draw comparisons on national rates (Table 2).

In the Northern Territory, congenital anomalies accounted for 1.7 per cent of all the disability adjusted life years (DALYs)²⁰.

Figure 4: Congenital anomalies in Victoria compared to other states and territories in Australia

Source of the data for various states and territories:

- National: Abeywardana S & Sullivan EA. Congenital anomalies in Australia 2002–2003. Birth anomalies series no. 3 Cat. no. PER 41. Sydney: AIHW National Perinatal Statistics Unit, 2008.
- Western Australia: Bower C, Baynam G, Rudy E, Quick J, Rowley A, Watson L, Cosgrove P. Report of the Western Australian Register of Developmental Anomalies 1980–2014. Western Australian Register of Developmental Anomalies. November 2015.
- Victoria: Victorian Congenital Anomalies Register. Congenital anomalies in Victoria 2007–2009. Consultative Council on Obstetric and Paediatric Mortality and Morbidity (CCOPMM), Victoria, 2016.
- Tasmania: Kids Come First Report 2009. Tasmania Government. 2009.
- South Australia: Gibson CS, Scott H, Scheil W. Birth defects in South Australia 2011. Adelaide. SA Birth Defects Register, Women's and Children's Health Network, 2015.
- Queensland: Endo T, Johnston T, Ellerington J. Data quality and quality issues to be aware of when using the Queensland Perinatal Data Collection to estimate the prevalence of congenital anomalies at birth in Queensland. Health Statistics Unit, Queensland Health. Brisbane 2014.
- New South Wales and ACT: Centre for Epidemiology and Research. New South Wales Mothers and Babies 2009. Sydney: NSW Ministry of Health, 2011 and Australian Capital Territory: Population Health Research Centre, ACT Health. Maternal and Perinatal Health in the ACT 2000–2004, ACT Government, Canberra ACT, 2007.

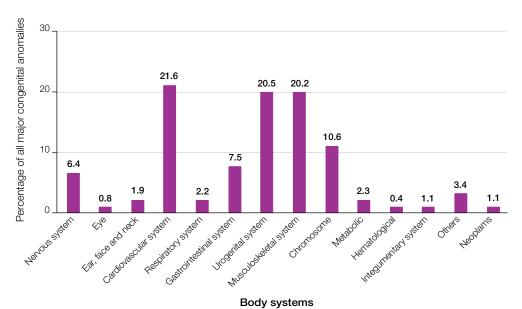

	ulsy; rral rral r t t t nancy nosed s of	ons are or trment	nd S fetal		ILS
WA	Cerebral palsy; or a structural or functional abnormality that is present at conception or occurs before the end of pregnancy and is diagnosed by six years of age	Minor malformations unless they are disfiguring or require treatment	Live births, stillbirths and terminations of pregnancy because of fetal malformation	All births	Up to 6 years
Vic	Any abnormality of prenatal origin including structural, genetic, chromosomal, and biochemical anomalies	Isolated minor anomalies	Live births, stillbirths, terminations of pregnancy at any gestational age	Live births, stillbirths and terminations of pregnancy at any gestation	During pregnancy, at birth or till 18 years of age
Tas	Not stated	Not stated	Not stated	Not stated	At birth
SA	Any abnormality, structural or functional, identified up to five years of age, provided that the condition had its origin before birth	Most minor malformations, unless they are disfiguring, require treatment or accompany another defect	Live births, stillbirths of at least 400 grams birth weight or 20 weeks gestation, and terminations of pregnancies of fetuses with birth defects	Total number of live births and stillbirths, excludes terminations of pregnancy before 20 weeks gestation.	Till 5 years of age
Qld	Congenital anomalies agreed upon by the National Congenital Anomalies Steering Committee (NCASC)	Those not agreed by NCASC	Live births, fetal deaths, termination of pregnancy	Live births plus fetal deaths plus all terminations of pregnancy before 20 weeks duration	Birth and detected before separation from care
NT	Structural, genetic, chromosomal and biochemical anomalies	Isolated minor anomalies	Live birth, stillbirth of 20 weeks or more gestation and termination of pregnancy	Congenital anomalies as percentage of DALYs	Up to 12 months of age
NSN	Conditions that affect the growth, development and health of the baby that are present before birth Conditions due to changes in the number of the baby's chromosomes Four conditions due to changes in the baby's inherited genetic information: cystic fibrosis, phenylketonuria, congenital hypothyroidism and thalassemia major	Minor anomalies, birth injuries, congenital infections, tumours/cysts and conditions arising from prematurity	Live births, stillbirths, terminations of pregnancy and spontaneous abortions	Live births and stillbirths	During pregnancy, at birth or till one year of age
ACT	Structural or anatomical defects that are present at or existing from the time of birth	Minor congenital anomalies or physiological conditions related to gestational age	Births and fetal deaths of at least 20 completed weeks gestation or a birth weight of at least 400 grams	Births	At birth
Reporting	Congenital anomalies included	Congenital anomalies excluded	Pregnancy outcome and gestational age	Denominator used in calculation of rates	Age at which anomaly is notified

Table 2: Comparison of major congenital anomalies reporting by Australian states and territories

4.4 Congenital anomalies by body systems

Among all congenital anomalies (not cases), cardiovascular anomalies were the most common (21.6 per cent), followed by anomalies of the urogenital system (20.5 per cent) and musculoskeletal system (20.2 per cent) in 2007–2009. The proportion of congenital anomaly by body systems is shown in Figure 5. Appendix A provides details on the major anomalies according to each body system.

4.5 Congenital anomalies by diagnostic category

Hypospadias was the most common congenital anomaly reported by diagnostic category, followed by obstructive defects of the renal pelvis and trisomy 21 in 2007–2009 (Table 3).

Table 3: Order of incidence of selected congenital anomalies, 2007–2009

Defect	N/1,000 pregnancies	1 in x number of pregnancies
Hypospadias	8.1	123
Obstructive defects of renal pelvis	4.3	230
Trisomy 21	3.4	297
Ventricular septal defect	3.1	326
Developmental dysplasia of the hip	3.0	332
All neural tube defects	1.1	910
Trisomy 18	1.1	922
Hydrocephalus	0.8	1,131
Cleft palate	0.7	1,354
Limb reduction defects	0.6	1,534
Cleft lip and palate	0.6	1,556
Renal agenesis and dysgenesis	0.6	1,556
Transposition of the great vessels	0.6	1,675
Cystic kidney disease	0.6	1,755
Spina bifida	0.5	1,925
Anencephaly	0.5	2,194
Coarctation of the aorta	0.4	2,239
Cleft lip	0.4	2,359
Diaphragmatic hernia	0.4	2,493
Hypoplastic left heart syndrome	0.4	2,493
Trisomy 13	0.4	2,676
Exomphalos	0.4	2,743
Tetralogy of fallot	0.3	2,965
Anorectal atresia and/or stenosis	0.3	3,180
Oesophageal atresia and/or stenosis	0.3	3,227
Microcephalus	0.3	3,597
Small intestinal atresia and/or stenosis	0.3	3,783
Gastroschisis	0.2	4,302
Encephalocele	0.1	6,649

4.6 Congenital anomalies by child characteristics

4.6.1 Gender

For all congenital anomaly cases reported between 2007 and 2009, 57.3 per cent were males (Figure 6). The rate of congenital anomalies was 48.4 per 1,000 pregnancies for male babies and 36.1 per 1,000 pregnancies for female babies. Male babies were 34.0 per cent more likely to have a congenital anomaly than female babies (RR 1.34, 95 per cent Cl 1.28–1.39, p-value < 0.0001).

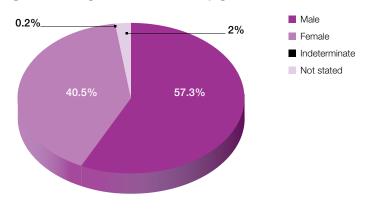


Figure 6: Congenital anomalies by gender, 2007–2009

4.6.2 Gestational age

Between 2007 and 2009, babies with a congenital anomaly were 2.6 times more likely to be born preterm (less than 37 weeks gestation) than those not having a congenital anomaly (RR 2.65, 95 per cent Cl 2.54–2.77, p-value < 0.0001). In 20.5 per cent of all congenital anomaly cases, the gestational age was less than 37 weeks (Table 4).

Table 4: Congenital anomalies by gestational age, 2007–2009

Gestational age (weeks)*	Number of cases with at least one congenital anomaly	Number of reported pregnancies	Congenital anomalies/ 1,000 pregnancies
20–27	703	2,520	279.0
28–31	295	1,774	166.3
32–36	937	13,957	67.1
37–41	6,265	196,734	31.8
>41	96	2,915	32.9

*Excludes terminations of pregnancy less than 20 weeks and those in whom gestational age was not stated

4.6.3 Birth weight

The rate of congenital anomalies in low birthweight babies (< 2,500 grams) was 118.3 per 1,000 pregnancies compared with 31.9 per 1,000 pregnancies for babies weighing 2,500 grams or more in 2007–2009 (Table 5). For low birthweight babies, the risk of having a congenital anomaly was 3.7 times higher than for babies weighing 2,500 grams or more (RR 3.70, 95 per cent Cl 3.52–3.89, p-value < 0.0001).

Table 5: Congenital anomalies by birth weight, 2007–2009

Weight in grams*	Number of cases with at least one congenital anomaly	Number of reported pregnancies	Congenital anomalies/ 1,000 pregnancies
< 1,000	715	2,641	270.7
1,000–2,499	1,103	12,730	86.6
≥ 2,500	6,468	202,727	31.9

*Excludes terminations of pregnancy less than 20 weeks and those cases in whom weight in grams was not stated

4.6.4 Birth plurality

By birth plurality, 94.0 per cent of congenital anomaly cases were singleton and five per cent were multiple births, plurality unknown for one per cent of births. In 2007–2009, the rate of congenital anomaly in singleton births was 42.1 per 1,000 pregnancies and 59.8 per 1,000 pregnancies for multiple births. The risk of congenital anomaly was 42.3 per cent higher in multiple births than singleton births (RR 1.42, 95 per cent Cl 1.29–1.56, p-value < 0.0001).

Assisted reproductive technology (ART) might have contributed to higher rate of congenital anomalies in multiple births. The VPDC started collecting data on the use of ART from 2009. Data for 2009 indicates that 60.0 per cent of multiple births in women who used ART resulted in a congenital anomaly as compared to 47.0 per cent of multiple births in women not using ART. In medical literature, while some studies supported the positive association of ART with major congenital anomalies²¹, other studies found no association^{22,23}.

4.6.5 Perinatal outcomes

Twelve per cent (n = 1,138) of all reported pregnancies with major congenital anomalies were terminated before 20 weeks gestation and 5.9 per cent (n = 555) were terminated at 20 weeks or more[§] gestation between 2007 and 2009. Of babies born at 20 weeks or more gestation with congenital anomaly, 1.1 per cent were stillborn, 1.8 per cent were neonatal deaths and 96.9 per cent lived beyond 28 days (Appendix E).

The risk of perinatal mortality in babies having congenital anomaly was 3.1 times higher than for babies without a congenital anomaly (RR 3.09, 95 per cent Cl 2.71–3.52, p-value < 0.0001). The perinatal mortality rate (excluding terminations) in babies with one or more congenital anomalies was 31.3 per 1,000 births compared with a perinatal mortality rate of 10.0 per 1,000 births in babies not having a congenital anomaly.

[§] The majority of structural congenital anomalies are not detected until the the 'anomaly ultrasound scan' is undertaken between 18 to 20 weeks gestation.

4.7 Congenital anomalies by maternal characteristics

4.7.1 Age

Between 2007 and 2009, women aged 35 years and older were 16.0 per cent more likely to have a baby with a congenital anomaly than those younger than 35 years of age (RR 1.16, 95 per cent Cl 1.11–1.22, p-value < 0.0001). The rate of congenital anomalies was highest in women aged 40 to 44 years, followed by those younger than 20 years of age (Table 6).

Age group*	Number of cases with at least one congenital anomaly	Number of reported pregnancies	Congenital anomalies/ 1,000 pregnancies
< 20	256	5,774	44.3
20–24	976	24,709	39.5
25–29	2,294	55,871	41.1
30–34	2,949	75,181	39.2
35–39	2,104	47,851	44.0
40–44	597	9,749	61.2

Table 6: Congenital anomalies by mother's age, 2007–2009

*Excludes those cases in which neither age nor date of birth was stated

4.7.2 Aboriginal women

The rate of congenital anomalies was similar for Aboriginal women (46.6 per 1,000 pregnancies) and non-Aboriginal women (43.5 per 1,000 pregnancies) in 2007–2009, indicating comparable risk of having a baby with a congenital anomaly (RR 1.07, 95 per cent Cl 0.88–1.29, p-value 0.47).

4.7.3 Parity

The rate of congenital anomaly was 45.6 per 1,000 pregnancies in primiparous women and 42.3 per 1,000 pregnancies in multiparous women between 2007 and 2009. For primiparous women, the risk of having a baby with congenital anomaly was seven per cent higher than for multiparous women (RR 1.07, 95 per cent Cl 1.03–1.12, p-value 0.0004).

4.7.4 Country of birth

The rate of congenital anomalies was highest for babies of women born in the Middle East and Africa in 2007–2009 (Table 7). Babies of women born in the Middle East were 27.0 per cent more likely to develop a congenital anomaly than babies of women born in Australia and other countries (RR 1.27, 95 per cent Cl 1.13–1.44, p-value 0.0001). High number of women born in the Middle East (72.1 per cent) resided in the North and West metropolitan region in 2007–2009.

Mother's country of birth	Number of cases with at least one congenital anomaly	Number of reported pregnancies	Congenital anomalies/ 1,000 pregnancies
Australia	6,810	156,153	43.6
Oceania/New Zealand	285	7,519	37.9
United Kingdom/Ireland	234	5,469	42.8
Europe	275	6,184	44.5
Middle East	253	4,583	55.2
North America	47	1,364	34.5
South America	38	1,272	29.9
Africa	268	5,719	46.9
Asia	1,189	28,068	42.4
Unknown	46	3,090	14.9

Table 7: Congenital anomalies by mother's country of birth, 2007–2009

4.8 Selected major congenital anomalies

4.8.1 Anencephaly

Definition: An encephaly is the total or partial absence of the cranial vault, covering skin and the brain tissue.

Incidence: Of all the congenital anomaly cases reported between 2007 and 2009, 1.1 per cent (n = 100) of babies had anencephaly, of which 85.0 per cent (n = 85) were isolated and 15.0 per cent (n = 15) occurred with other congenital anomalies.

Trend: From 1998 to 2009, there was no significant change (p-value 0.573) in the incidence of anencephaly (Figure 7).

Risk factors: The risk of an encephaly did not vary with maternal age, birth plurality or the gender of the baby (Table 8).

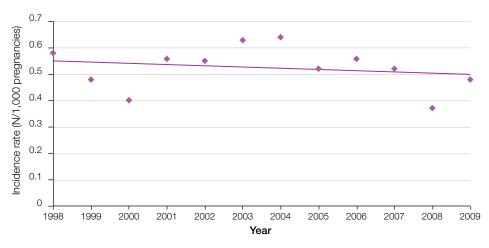
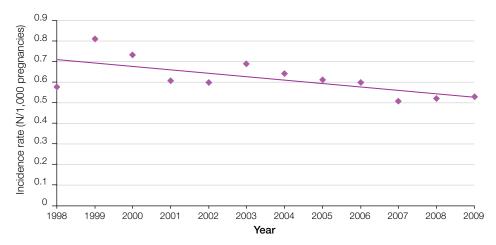


Figure 7: Anencephaly per 1,000 pregnancies, 1998 to 2009

Table 8: Anencephaly by selected maternal and child characteristics, 2007–2009

Characteristic		Anencephaly/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.5	-
Mother 6 age	≥ 35 years	0.4	1.25 (0.78–2.01)
Plurality	Single (Ref)	0.5	-
Flurality	Multiple	0.7	0.65 (0.26–1.62)
Gender	Male (Ref)	0.2	-
Genuer	Female	0.2	0.82 (0.44–1.53)


4.8.2 Spina bifida

Definition: Spina bifida is the herniation or exposure of the spinal cord and/or meninges through incomplete closure of the spine. Hydrocephalus may or may not be present.

Incidence: Of all the congenital anomaly cases reported between 2007 and 2009, 1.2 per cent (n = 114) of babies had spina bifida, of which 74.6 per cent (n = 85) were isolated and 25.4 per cent (n = 29) occurred with other congenital anomalies.

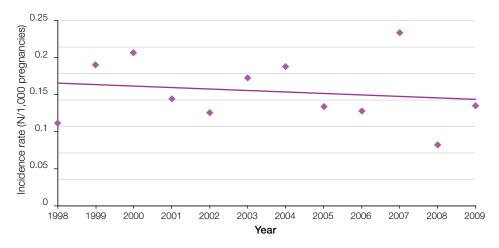
Trend: There was no significant change (p-value 0.578) in the incidence of spina bifida from 1998 to 2009 (Figure 8).

Risk factors: The risk of spina bifida did not vary significantly with maternal age, birth plurality or gender (Table 9).

Figure 8: Spina bifida per 1,000 pregnancies, 1998 to 2009

Table 9: Spina bifida by selected maternal and child characteristics, 2007–2009

Characteristic		Spina bifida/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.5	-
-	≥ 35 years	0.5	0.94(0.62–1.43)
Plurality	Single (Ref)	0.5	-
Thanky	Multiple	0.1	3.91(0.54–28.06)
Gender	Male (Ref)	0.4	-
Genuer	Female	0.5	0.77 (0.52–1.16)


4.8.3 Encephalocele

Definition: Encephalocele is the herniation of the brain and/or meninges through a defect in the skull.

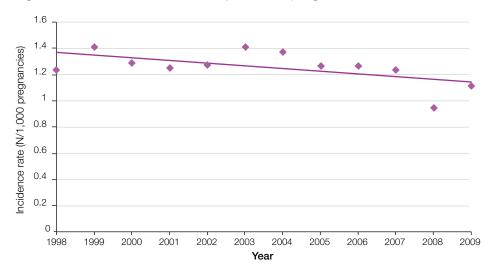
Incidence: Of all congenital anomaly cases reported between 2007 and 2009, 0.3 per cent of babies (n = 33) had encephalocele, of which 45.5 per cent (n = 15) occurred as an isolated anomaly and 54.5 per cent (n = 18) occurred with other congenital anomalies.

Trend: Incidence rates of encephalocele did not change significantly (p-value 0.583) from 1998 to 2009 (Figure 9).

Risk factors: The risk of encephalocele did not vary significantly with maternal age, birth plurality or gender (Table 10).

Table 10: Encephalocele by selected maternal and child characteristics, 2007–2009

Characteristic		Encephalocele/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.1	-
womer s age	\geq 35 years	0.2	0.94 (0.43–2.03)
Plurality	Single (Ref)	0.1	-
Flurality	Multiple	0.4	0.34 (0.10–1.13)
Condon	Male (Ref)	0.1	-
Gender	Female	0.1	0.83 (0.39–1.74)


4.8.4 All neural tube defects

Definition: All cases of anencephaly, spina bifida and encephalocele.

Incidence: Of all the congenital anomaly cases reported between 2007 and 2009, 2.6 per cent (n = 241) of babies had neural tube defects.

Trend: Although there was a decline in neural tube defects from 1998 to 2009 (Figure 10) this was not statistically significant (p-value 0.514). This finding is comparable to trends in South Australia²⁴, Western Australia²⁵ and Queensland²⁶.

Risk factors: The risk of neural tube defects did not differ significantly with maternal age, birth plurality and gender (Table 11).

Table 11: All neural tube defects by selected maternal and child characteristics, 2007–2009

Characteristic		All neural tube defects/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	1.1	-
Mother 3 age	\geq 35 years	1.0	1.08 (0.80–1.44)
Plurality	Single (Ref)	1.1	-
Flurancy	Multiple	1.2	0.89 (0.45–1.74)
Gender	Male (Ref)	0.7	-
Genuer	Female	0.8	0.87 (0.64–1.18)

4.8.5 Microcephalus

Definition: Microcephalus is the presence of a small cranium defined by an occipito-frontal circumference three standard deviations below the age-sex appropriate distribution curves.

Incidence: Between 2007 and 2009, microcephalus was reported in 0.6 per cent (n = 61) of all congenital anomaly cases, of which 50.8 per cent (n = 31) were isolated.

Trend: Incidence of microcephalus from 1998 to 2009 did not change significantly (p-value 0.649) (Figure 11).

Risk factors: The risk of having a baby with microcephalus did not vary with maternal age; however, multiple births increased the risk by 2.5 times compared with singleton pregnancy and female babies were 1.8 times more likely to develop microcephalus than male babies (Table 12).

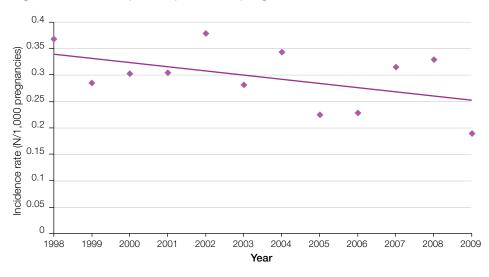
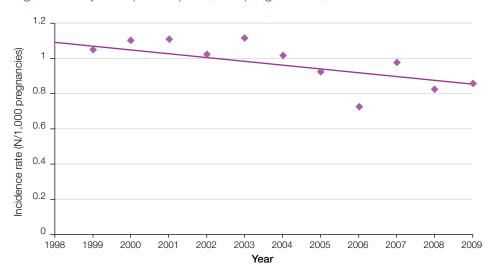


Figure 11: Microcephalus per 1,000 pregnancies, 1998 to 2009

Table 12: Microcephalus by selected maternal and child characteristics, 2007–2009

Characteristic		Microcephalus/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.3	-
woners age	\geq 35 years	0.3	0.78 (0.45–1.34)
Plurality	Single (Ref)	0.3	-
Flurality	Multiple	0.7	2.57 (1.03–6.41)*
Gender	Male (Ref)	0.2	-
Genuer	Female	0.4	1.8 (1.06–3.04)*


4.8.6 Hydrocephalus

Definition: Hydrocephalus is the dilatation of the cerebral ventricles (not associated with primary brain atrophy) with or without enlargement of the head. Diagnosed at birth, these cases exclude hydrocephalus associated with spina bifida or encephalocele.

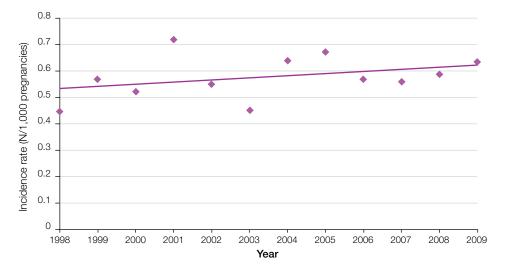
Incidence: Of all the congenital anomaly cases reported between 2007 and 2009, 2.1 per cent (n = 194) of babies had hydrocephalus, of which 42.3 per cent occurred as an isolated anomaly.

Trend: From 1998 to 2009, the incidence rate of hydrocephalus did not change significantly (p-value 0.402) (Figure 12).

Risk factors: The risk of giving birth to a baby with hydrocephalus did not vary with maternal age; however, multiple births increased the risk by three times. Male babies were 57.0 per cent more likely to develop hydrocephalus than female babies (Table 13).

Table 13: Hydrocephalus by selected maternal and child characteristics, 2007–2009

Characteristic		Hydrocephalus/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.9	-
womers age	≥ 35 years	0.9	0.93 (0.68–1.28)
Plurality	Single (Ref)	0.8	-
Plurality	Multiple	2.4	2.94 (1.81–4.77)*
Gender	Male (Ref)	1.1	1.57 (1.17–2.10)*
Genuer	Female	0.7	-


4.8.7 Transposition of the great vessels

Definition: In this anomaly, the aorta exits from the right ventricle and the pulmonary artery from the left ventricle, with or without other cardiac defects. It includes double outlet right ventricle, so-called corrected transposition.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 1.4 per cent (n = 131) had transposition of great vessels, of which 10.7 per cent (n = 14) occurred as an isolated anomaly.

Trend: There was no significant change (p-value 0.715) in incidence rates from 1998 to 2009 (Figure 13).

Risk factors: The risk of having a baby with transposition of the great vessels did not vary significantly with maternal age or birth plurality; however, male babies were 89.0 per cent more likely to develop this anomaly (Table 14).

Table 14: Transposition of the great vessels by selected maternal and child characterist	ics,
2007–2009	

Characteristic		Transposition of the great vessels/ 1,000 pregnancies	RR and 95 per cent Cl
Mother's age	< 35 years (Ref)	0.6	-
	≥ 35 years	0.6	0.97 (0.65–1.42)
Plurality	Single (Ref)	0.6	-
	Multiple	0.8	1.38 (0.60–3.13)
Gender	Male (Ref)	0.8	1.89 (1.32–2.72)*
	Female	0.4	-

4.8.8 Tetralogy of Fallot

Definition: Tetralogy of fallot is characterised by ventricular septal defect, overriding aorta, infundibular pulmonary stenosis and often right ventricular hypertrophy.

Incidence: Of all the congenital anomaly cases reported between 2007 and 2009, 0.8 per cent (n = 74) of babies had tetralogy of fallot, of which 41.9 per cent (n = 31) occurred as an isolated anomaly.

Trend: Incidence rates from 1998 to 2009 were comparable (p-value 0.791) (Figure 14).

Risk factors: The risk of having a baby with tetralogy of fallot did not vary significantly with maternal age, birth plurality or gender (Table 15).

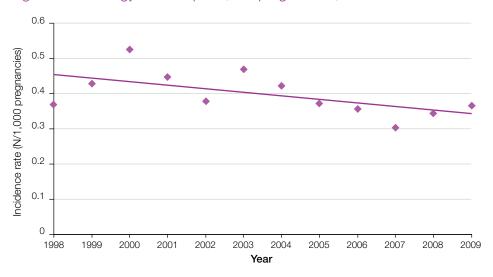


Figure 14: Tetralogy of Fallot per 1,000 pregnancies, 1998 to 2009

Table 15: Tetralogy of Fallot by selected maternal and child characteristics, 2007–2009	Table 15: Tetral	ogy of Fallot b	y selected maternal and o	child characteristics,	2007-2009
---	------------------	-----------------	---------------------------	------------------------	-----------

Characteristic		Tetralogy of Fallot/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.4	-
	\geq 35 years	0.3	1.18 (0.69–2.04)
Plurality	Single (Ref)	0.3	-
Fluranty	Multiple	0.5	1.64 (0.60–4.50)
Candan	Male (Ref)	0.4	-
Gender	Female	0.3	1.16 (0.73–1.84)

4.8.9 Ventricular septal defect

Definition: Ventricular septal defect is characterised by a defect in the septum between the left and right ventricles of the heart, which permits blood to be shunted between them. It excludes ventricular septal defect as part of Tetralogy of Fallot.

Incidence: Of all the congenital anomaly cases reported between 2007 and 2009, 7.1 per cent (n = 673) of babies had ventricular septal defect, of which 44.9 per cent (n = 302) occurred as an isolated anomaly.

Trend: Rates of incidence of ventricular septal defect decreased significantly (p-value < 0.001) from 1998 to 2009 (Figure 15).

Risk factors: The risk of ventricular septal defect was not affected by gender of the baby; however, babies born to women aged 35 years and older were 19.0 per cent more likely to develop the defect compared with those born to women younger than 35 years of age. Multiple births double the risk of ventricular septal defect compared with singleton births (Table 16).

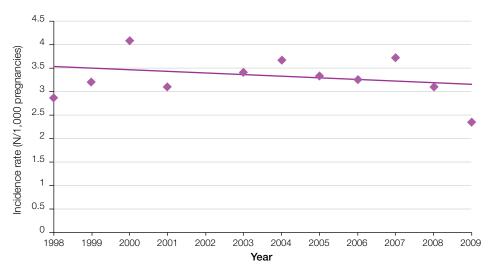
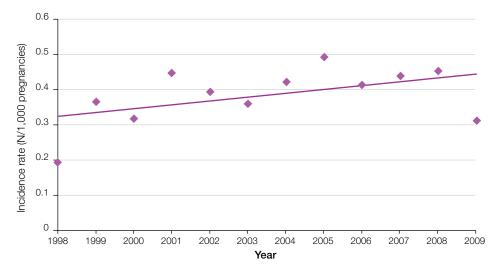


Figure 15: Ventricular septal defect per 1,000 pregnancies, 1998 to 2009

Characteristic		Ventricular septal defect/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	2.9	-
Mother's age	≥ 35 years	3.5	1.19 (1.06–1.41)*
Diurolity	Single (Ref)	3.0	-
Plurality	Multiple	6.0	2.05 (1.52–2.78)*
Candar	Male (Ref)	3.3	-
Gender	Female	2.9	1.15 (0.99–1.34)

Table 16: Ventricular	r septal defect by	selected maternal	and child characteristics,	2007–2009
-----------------------	--------------------	-------------------	----------------------------	-----------


4.8.10 Hypoplastic left heart syndrome

Definition: Hypoplastic left heart syndrome comprises hypoplastic left ventricle associated with aorta and/or mitral valve atresia.

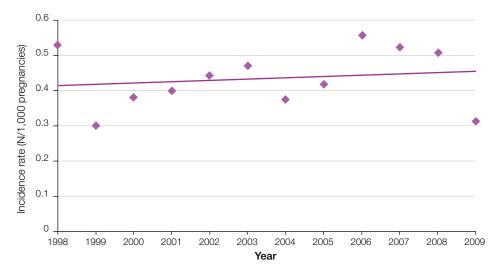
Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 0.9 per cent (n = 88) of babies had hypoplastic left heart syndrome, of which 44.3 per cent (n = 39) occurred as an isolated anomaly.

Trend: The incidence of hypoplastic left heart syndrome did not change significantly (p-value 0.332) from 1998 to 2009 (Figure 16).

Risk factors: The risk of hypoplastic left heart syndrome did not vary with maternal age or birth plurality; however, male babies were 85.0 per cent more likely to develop hypoplastic left heart syndrome than female babies (Table 17).

Table 17: Hypoplastic left heart syndrome by selected maternal and child characteristics,	
2007–2009	

Characteristic		Hypoplastic left heart syndrome/ 1,000 pregnancies	RR and 95 per cent Cl
Mother's age	< 35 years (Ref)	0.4	-
	≥ 35 years	0.4	1.12 (0.69–1.84)
Plurality	Single (Ref)	0.4	-
	Multiple	0.3	1.49 (0.36–6.06)
Gender	Male (Ref)	0.5	1.85 (1.18–2.90)*
	Female	0.3	-


4.8.11 Coarctation of the aorta

Definition: In coarctation of the aorta, there is an obstruction in the descending aorta, almost invariably (98 per cent) at the insertion of the ductus arteriosus.

Incidence: Among all the congenital anomaly cases reported between 2007 and 2009, 1.04 per cent (n = 98) of babies had coarctation of the aorta, of which 18.4 per cent (n = 18) occurred as an isolated anomaly.

Trend: Incidence rates of coarctation of the aorta did not change significantly (p-value 0.342) from 1998 to 2009 (Figure 17).

Risk factors: The risk of a baby having coarctation of the aorta does not vary with maternal age, birth plurality or gender (Table 18).

Table 18: Coarctation of the aorta by selected maternal and child characteristics, 2007–2009

Characteristic		Coarctation of the aorta/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.4	-
	\geq 35 years	0.5	0.93 (0.59–1.45)
Plurality	Single (Ref)	0.4	-
	Multiple	0.8	0.53 (0.23–1.21)
Gender	Male (Ref)	0.5	-
	Female	0.4	1.27 (0.85–1.90)

4.8.12 Cleft palate

Definition: Cleft palate is a closure defect of the hard and/or soft palate behind the foramen incisivum without cleft lip; excludes cleft palate with cleft lip, cleft uvula, functional short palate and high narrow palate.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 1.7 per cent (n = 162) had cleft palate, of which 57.4 per cent (n = 93) occurred as an isolated anomaly.

Trend: The incidence of cleft palate significantly increased in 2003, decreased to 2007, and increased in 2008 and 2009 (p-value 0.009) (Figure 18).

Risk factors: The risk of having a baby with cleft palate did not differ with maternal age or birth plurality; however, female babies were 38.0 per cent more likely to develop cleft palate than male babies (Table 19).

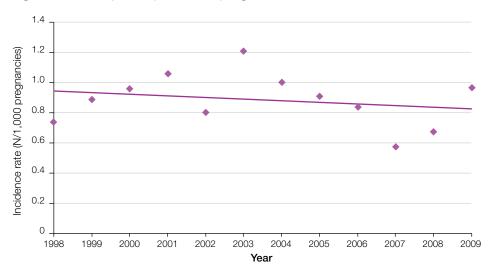


Figure 18: Cleft palate per 1,000 pregnancies, 1998 to 2009

Table 19: Cleft palate by selected maternal and child characteristics, 2007–2009

Characteristic		Cleft palate/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.7	-
	\geq 35 years	0.7	1.04 (0.73–1.48)
Plurality	Single (Ref)	0.7	-
	Multiple	0.5	1.37 (0.50–3.69)
Gender	Male (Ref)	0.6	-
	Female	0.9	1.38 (1.01–1.89)*

4.8.13 Cleft lip

Definition: Cleft lip is a closure defect (partial or complete) of the upper lip, excluding the alveolar ridge and palate.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 1.0 per cent (n = 93) had cleft lip, of which 78.5 per cent (n = 73) were isolated and 21.5 per cent (n = 20) occurred with other congenital anomalies.

Trend: Incidence rates remained similar (p-value 0.825) from 1998 to 2009 (Figure 19).

Risk factors: The risk of cleft lip did not vary with maternal age, birth plurality or gender (Table 20).

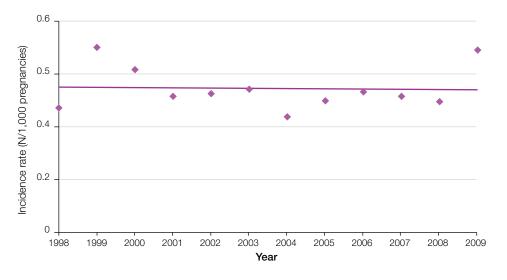
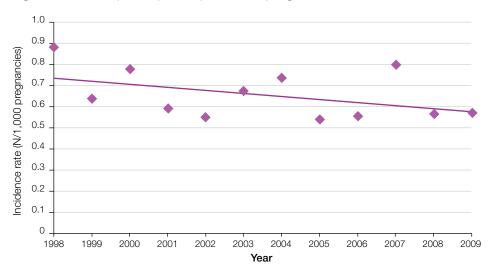


Figure 19: Cleft lip per 1,000 pregnancies, 1998 to 2009

Table 00, Claff lin	, hu	a alastad mataria	l and abild	abaractariation	0007 0000
Table 20: Cleft lip) Dy	selected materna	a and chiid	i characteristics,	2007-2009

Characteristic		Cleft lip/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.4	-
	\geq 35 years	0.4	1.04 (0.65–1.67)
Plurality	Single (Ref)	0.4	-
	Multiple	0.3	1.57 (0.38–6.40)
Gender	Male (Ref)	0.4	-
	Female	0.4	1.14 (0.75–1.72)


4.8.14 Cleft lip and palate

Definition: Cleft lip and palate is a closure defect (partial or complete) of the upper lip, alveolar ridge and palate.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 1.5 per cent (n = 141) had cleft lip and palate, of which 66.7 per cent (n = 94) occurred as an isolated anomaly.

Trend: Incidence rates of cleft lip and palate remained similar (p-value 0.18) from 1998 to 2009 (Figure 20).

Risk factors: The risk of development of cleft lip and palate did not vary with maternal age and birth plurality; however, male babies were 76.0 per cent more likely to have cleft lip and palate than female babies (Table 21).

Table 21: Cleft lip and palate by selected maternal and child characteristics, 2007–2009

Characteristic		Cleft lip and palate/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.6	-
	≥ 35 years	0.6	0.99 (0.68 –1.44)
Plurality	Single (Ref) Multiple	0.6 0.9	- 0.65 (0.30–1.40)
Gender	Male (Ref)	0.8	1.76 (1.24–2.49)*
	Female	0.5	-

4.8.15 Oesophageal atresia and/or stenosis

Definition: Oesophageal atresia and/or stenosis is the absence of continuity or narrowing of the oesophagus, with or without tracheal fistula.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 0.7 per cent (n = 68) had oesophageal atresia and/or stenosis, of which 23.5 per cent (n = 16) occurred as an isolated anomaly.

Trend: Incidence rates remained similar (p-value 0.876) from 1998 to 2009 (Figure 21).

Risk factors: Women aged 35 years and older were 64.0 per cent more likely to give birth to a baby with oesophageal atresia and/or stenosis compared with women younger than 35 years of age. The risk of oesophageal atresia and/or stenosis in babies did not vary with birth plurality or gender of the baby (Table 22).

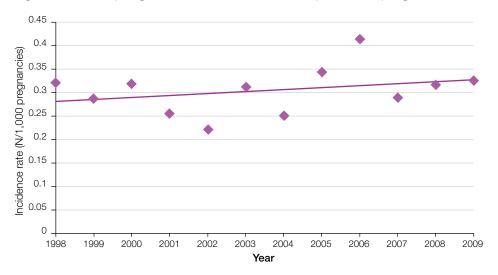
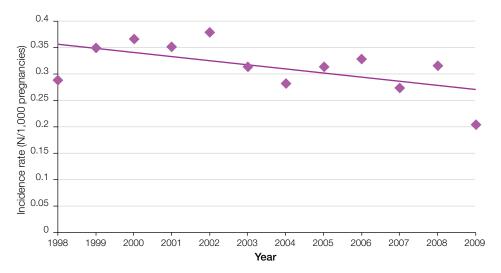


Figure 21: Oesophageal atresia and/or stenosis per 1,000 pregnancies, 1998 to 2009

Table 22: Oesophageal atresia and/or stenosis by selected maternal and child characteristic	cs,
2007–2009	

Characteristic		Oesophageal atresia and/or stenosis/ 1,000 pregnancies	RR and 95 per cent Cl
Mother's age	< 35 years (Ref)	0.3	-
	≥ 35 years	0.4	1.64 (1.003–2.68)*
Plurality	Single (Ref)	0.3	-
	Multiple	0.5	1.80 (0.65–4.94)
Gender	Male (Ref)	0.4	-
	Female	0.3	1.37 (0.84–2.22)


4.8.16 Small intestinal atresia and/or stenosis

Definition: In small intestinal atresia and/or stenosis there is complete or partial occlusion of the lumen of a segment of the small intestine. It can involve a single area or multiple areas of the duodenum, jejunum or ileum.

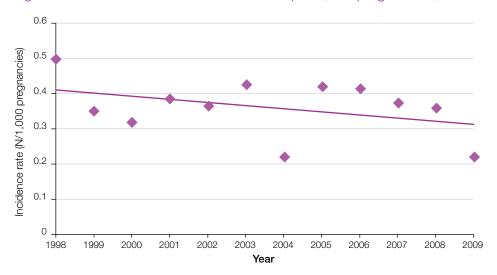
Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 0.6 per cent (n = 58) had small intestinal atresia and/or stenosis, of which 41.4 per cent (n = 24) occurred as an isolated anomaly.

Trend: The incidence of small intestinal atresia and/or stenosis did not significantly change (p-value 0.897) from 1998 to 2009 (Figure 22).

Risk factors: The risk of small intestinal atresia and/or stenosis in babies did not vary with maternal age, birth plurality or gender of the baby (Table 23).

Table 23: Small intestinal atresia and/or stenosis by selected maternal and child chara	acteristics,
2007–2009	

Characteristic		Small intestinal atresia and/or stenosis/ 1,000 pregnancies	RR and 95 per cent Cl
Mother's age	< 35 years (Ref)	0.3	-
	≥ 35 years	0.3	0.85 (0.48–1.50)
Plurality	Single (Ref)	0.3	-
	Multiple	0.1	1.97(0.27–14.27)
Gender	Male (Ref)	0.3	-
	Female	0.3	0.89 (0.53–1.49)


4.8.17 Anorectal atresia and/or stenosis

Definition: The absence of continuity of the anorectal canal or communication between the rectum and anus, or narrowing of the anal canal, with or without fistula to neighbouring organs. Excludes ectopic anus.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 0.7 per cent (n = 69) had anorectal atresia and/or stenosis, of which 36.2 per cent (n = 25) occurred as an isolated anomaly.

Trend: The incidence of anorectal atresia and/or stenosis did not change significantly (p-value 0.266) from 1998 to 2009 (Figure 23).

Risk factors: The risk of anorectal atresia and/or stenosis in babies did not vary with maternal age, birth plurality or gender of the baby (Table 24).

Table 24: Anorectal atresia and/or stenosis by selected maternal and child charac	teristics,
2007–2009	

Characteristic		Anorectal atresia and/or stenosis/ 1,000 pregnancies	RR and 95 per cent Cl
Mother's age	< 35 years (Ref)	0.3	-
	≥ 35 years	0.4	0.80 (0.48–1.35)
Plurality	Single (Ref)	0.3	-
	Multiple	0.3	1.16 (0.28–4.74)
Gender	Male (Ref)	0.3	-
	Female	0.3	1.17 (0.73–1.89)

4.8.18 Hypospadias

Definition: Hypospadias is opening of the urethra on the ventral side of the penis, distally to the sulcus.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 9.2 per cent (n = 867) had hypospadias, of which 86.5 per cent (n = 750) occurred as an isolated anomaly.

Trend: The incidence of hypospadias increased significantly from 1998 to 2009 (p-value 0.008) (Figure 24).

Risk factors: The risk of hypospadias did not differ with maternal age or birth plurality (Table 25).

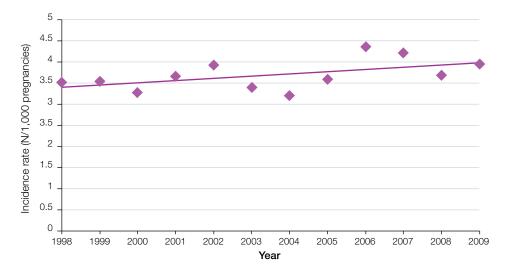
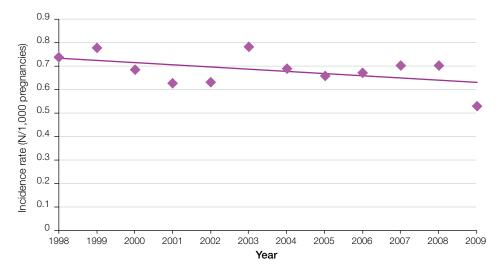


Figure 24: Hypospadias per 1,000 pregnancies, 1998 to 2009

Table 25: Hypospadias by selected maternal and child characteristics, 2007–2009

Characteristic		Hypospadias/ 1,000 pregnancies	RR and 95 per cent CI
Mothor's ago	< 35 years (Ref)	7.9	-
Mother's age	\geq 35 years	7.4	1.06 (0.91–1.24)
Plurality	Single (Ref)	7.6	-
Plurality	Multiple	10.4	1.35 (0.98–1.86)
Gender	Male (Ref)	7.7	
Genuer	Female	N/A	N/A


4.8.19 Renal agenesis and dysgenesis

Definition: This heterogeneous group includes bilateral or unilateral absence of the kidneys, or severe renal dysplasia.

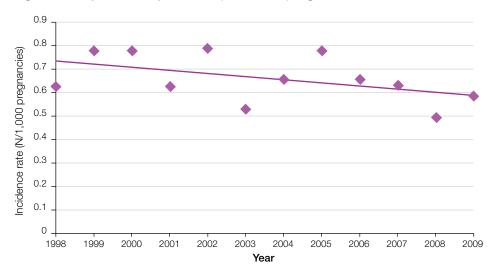
Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 1.5 per cent (n = 141) had renal agenesis and dysgenesis, of which 45.4 per cent occurred as an isolated anomaly.

Trend: The incidence of renal agenesis and dysgenesis did not change significantly from 1998 to 2009 (p-value 0.909) (Figure 25).

Risk factors: The risk of renal agenesis and dysgenesis in babies did not differ with maternal age or birth plurality; however, male babies were 43.0 per cent more likely to develop renal agenesis and dysgenesis compared with female babies (Table 26).

Table 26: Renal agenesis and dysgenesis by selected maternal and child character	eristics,
2007–2009	

Characteristic		Renal agenesis and dysgenesis/ 1,000 pregnancies	RR and 95 per cent Cl
Mother's age	< 35 years (Ref)	0.7	-
	≥ 35 years	0.5	1.42 (0.94–2.16)
Plurality	Single (Ref)	0.6	-
	Multiple	0.7	0.94 (0.38–2.30)
Gender	Male (Ref)	0.8	1.43 (1.02–2.01)*
	Female	0.5	-


4.8.20 Cystic kidney disease

Definition: Cystic kidney disease includes renal cysts of varying size and extent, occurring bilaterally or unilaterally. Polycystic and multicystic kidney diseases are both included.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 1.3 per cent (n = 125) had cystic kidney disease, of which 45.6 per cent (n = 57) occurred as an isolated anomaly.

Trend: The incidence of cystic kidney disease did not significantly (p-value 0.404) change from 1998 to 2009 (Figure 26).

Risk factors: The risk of cystic kidney disease in babies did not differ with maternal age or birth plurality; however, male babies were 60.0 per cent more likely to develop renal agenesis and dysgenesis compared with female babies (Table 27).

Table 27: Cystic kidney disease by selected maternal and child characteristics, 2007–2009

Characteristic		Cystic kidney disease/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.6	-
Mother S age	≥ 35 years	0.5	1.34 (0.87–2.07)
Plurality	Single (Ref)	0.6	-
Flurality	Multiple	0.8	1.45 (0.64–3.29)
Gender	Male (Ref)	0.7	1.60 (1.11–2.31)*
Gender	Female	0.4	-

4.8.21 Obstructive defects of the renal pelvis

Definition: This heterogeneous group includes hydronephrosis and any other defect that results in dilatation of the renal collecting system, bilaterally or unilaterally.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 10.1 per cent (n = 954) had obstructive defects of the renal pelvis, of which 76.4 per cent (n = 729) occurred as an isolated anomaly.

Trend: The incidence of obstructive defects of the renal pelvis significantly decreased in 2001 and 2006, increased in 2007 and 2008, and decreased again in 2009 (p-value < 0.001) (Figure 27).

Risk factors: Multiple births increased the risk of development of obstructive defects of renal pelvis in babies by 58.0 per cent when compared with singleton births. Male babies were 2.5 times more likely to develop obstructive defects of the renal pelvis than female babies (Table 28).

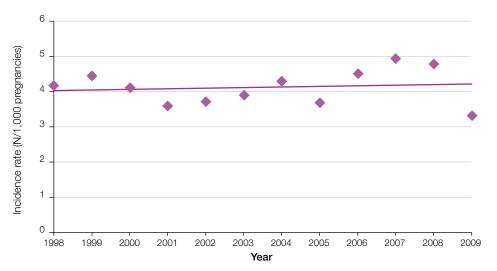


Figure 27: Obstructive defects of the renal pelvis per 1,000 pregnancies, 1998 to 2009

Table 28: Obstructive defects of the renal pelvis by selected maternal and child characteristics,
2007–2009

Characteristic		Obstructive defects of the renal pelvis/1,000 pregnancies	RR and 95 per cent Cl
Mother's age	< 35 years (Ref)	4.4	-
	≥ 35 years	4.1	1.05 (0.91–1.22)
Plurality	Single (Ref)	4.3	-
	Multiple	6.7	1.58 (1.19–2.11)*
Gender	Male (Ref)	6.2	2.52 (2.18–2.90)*
	Female	2.5	-

4.8.22 Developmental dysplasia of the hip

Definition: Developmental dysplasia of the hip results in the femoral head being displaced (or displaceable) from the acetabulum of the pelvis. This should not be confused with 'clicky hips' which are not included in the VCAR.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 7.0 per cent (n = 661) had developmental dysplasia of the hip, of which 92.6 per cent (n = 612) occurred as isolated anomaly.

Trend: The incidence of developmental dysplasia of the hip has varied over time such that incidence increased in 2003 and 2004, decreased in 2005, increased again in 2006 and 2007, and decreased significantly in 2009 (p-value < 0.001) (Figure 28).

Risk factors: The risk of developmental dysplasia of the hip in babies did not differ with maternal age or birth plurality; however, female babies were 3.6 times more likely to have developmental dysplasia of the hip compared with male babies (Table 29).

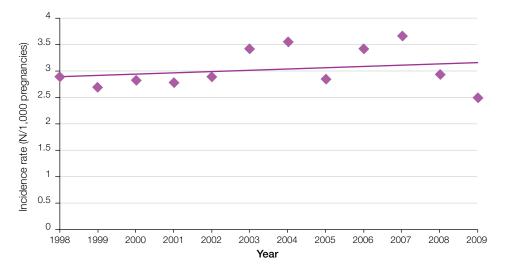


Figure 28: Developmental dysplasia of the hip per 1,000 pregnancies, 1998 to 2009

2007-2009			
Characteristic		Developmental dysplasia of the hip/ 1,000 pregnancies	RR and 95 per cent Cl
Mother's age	< 35 years (Ref)	3.0	-
	≥ 35 years	3.1	0.97 (0.82–1.15)
Plurality	Single (Ref)	3.1	-
	Multiple	1.9	1.60 (0.94–2.71)
Gender	Male (Ref)	1.3	-
	Female	4.9	3.66 (3.04–4.39)*

Table 29: Developmental dysplasia of the hip by selected maternal and child characteristics, 2007–2009

4.8.23 Limb reduction defects

Definition: Limb reduction defects range in severity from partial absence of a phalanx to the complete absence of a major skeletal structure such as a whole limb.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 1.5 per cent (n = 143) had limb reduction defects, of which 34.9 per cent (n = 50) occurred as isolated anomaly.

Trend: The incidence of limb reduction defects did not change significantly (p-value 0.075) from 1998 to 2009 (Figure 29).

Risk factors: The risk of limb reduction defects in babies did not differ with maternal age or gender of the baby; however the risk increased 3.1 times in multiple births compared with singleton births (Table 30).

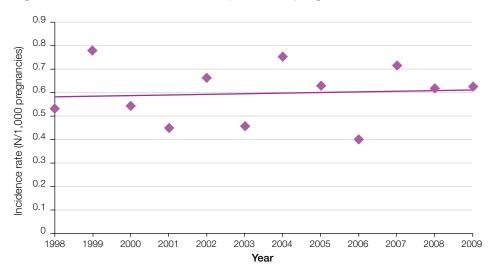


Figure 29: Limb reduction defects per 1,000 pregnancies, 1998 to 2009

Table 30: Limb reduction defects by selected maternal and child characteristics, 2007–2009

Characteristic		Limb reduction defects/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.6	-
	≥ 35 years	0.7	0.94 (0.65–1.36)
Plurality	Single (Ref) Multiple	0.6 1.9	- 3.12 (1.80–5.41)*
Gender	Male (Ref) Female	0.7 0.5	- 1.33 (0.94–1.86)

4.8.24 Diaphragmatic hernia

Definition: In diaphragmatic hernia, abdominal organs herniate into the thorax through a defect of the diaphragm.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 0.9 per cent (n = 88) had diaphragmatic hernia, of which 37.5 per cent (n = 33) occurred as isolated anomaly.

Trend: The incidence of diaphragmatic hernia did not change significantly (p-value 0.541) from 1998 to 2009 (Figure 30).

Risk factors: The risk of development of diaphragmatic hernia in a baby did not vary with maternal age, birth plurality or gender of the baby (Table 31).

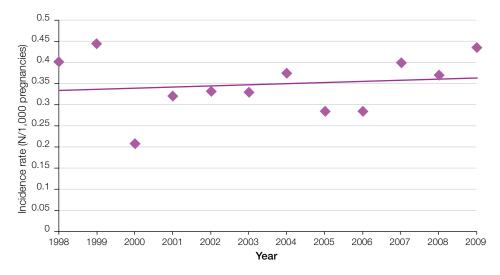
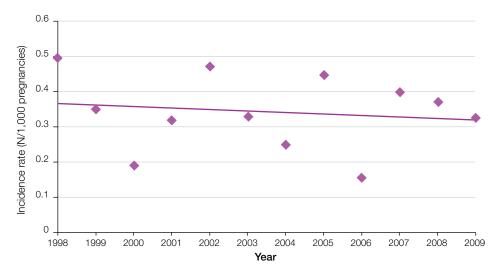


Figure 30: Diaphragmatic hernia per 1,000 pregnancies, 1998 to 2009

Table 31: Diaphragmatic hernia by selected maternal and child characteristics, 2007–2009

Characteristic		Diaphragmatic hernia/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.4	-
woners age	\geq 35 years	0.4	0.94 (0.59–1.50)
Diurolity	Single (Ref)	0.4	-
Plurality	Multiple	0.7	1.73 (0.70–4.27)
Gender	Male (Ref)	0.4	-
Genuer	Female	0.4	1.05 (0.69–1.59)


4.8.25 Exomphalos

Definition: Exomphalos is the herniation of abdominal contents through the umbilical insertion and covered by membrane which may or may not be intact.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 0.8 per cent (n = 80) had exomphalos, of which 17.5 per cent (n = 14) occurred as an isolated anomaly.

Trend: The incidence of exomphalos significantly decreased (p-value 0.014) from 1998 to 2009 (Figure 31).

Risk factors: The risk of development of exomphalos in a baby did not vary with maternal age, birth plurality or gender of the baby (Table 31).

Table 32: Exomphalos by selected maternal and child characteristics, 2007–2009

Characteristic		Exomphalos/ 1,000 pregnancies	RR and 95 per cent CI
Mathar'a aga	< 35 years (Ref)	0.3	-
Mother's age	\geq 35 years	0.4	1.56 (0.96–2.55)
Diurolity	Single (Ref)	0.4	-
Plurality	Multiple	0.5	1.53 (0.56–4.20)
Gender	Male (Ref)	0.3	-
Gender	Female	0.4	1.34 (0.84–2.14)

4.8.26 Gastroschisis

Definition: Gastroschisis is the visceral herniation through an abdominal wall defect lateral to an intact umbilical cord, and not covered by a membrane.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 0.5 per cent (n = 51) had gastroschisis, of which 66.7 per cent (n = 34) occurred as an isolated anomaly.

Trend: The incidence of gastroschisis did not change significantly (p-value 0.761) from 1998 to 2009 (Figure 32).

Risk factors: The risk of development of gastroschisis in babies varied with maternal age, with women younger than 35 years at 2.2 times greater risk as compared to women greater than 35 years of age, and women younger than 20 years at 10 times greater risk than women aged 20 years and older (RR 10.2, 95 per cent Cl 5.2 – 19.8). The risk of gastroschisis did not vary with birth plurality and gender (Table 33).

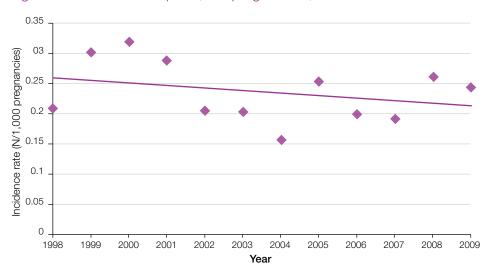
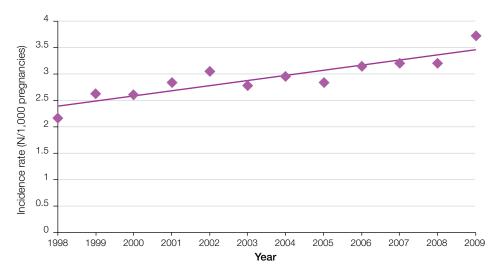


Figure 32: Gastroschisis per 1,000 pregnancies, 1998 to 2009

Characteristic		Gastroschisis/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.3	2.22 (1.002–4.93)*
	≥ 35 years	0.1	-
Plurality	Single (Ref)	0.2	-
Turanty	Multiple	0.0	3.57 (0.22–57.89)
Gender	Male (Ref)	0.2	-
Gender	Female	0.2	1.23 (0.69–2.18)


4.8.27 Trisomy 21

Definition: Trisomy 21, also called Down's syndrome, is characterised by an additional chromosome 21.

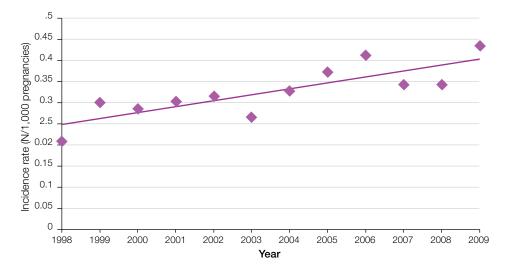
Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 7.8 per cent (n = 740) had trisomy 21, of which 64.2 per cent were terminated before 20 weeks of gestation.

Trend: The incidence of trisomy 21 increased significantly (p-value < 0.001) from 1998 to 2009 (Figure 33). This is similar to incidence rates observed in South Australia²⁴ and Western Australia²⁵. The incidence of trisomy 21 has declined in Queensland²⁶ and remained stable in New South Wales²⁷.

Risk factors: The risk of trisomy 21 in babies of women aged 35 years and older was 5.3 times higher than for babies of women younger than 35 years of age. The risk of trisomy 21 did not vary by birth plurality and gender of the baby (Table 34).

Table 34: Trisomy 21 by selected maternal and child characteristics, 2007–2009

Characteristic		Trisomy 21/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	1.2	-
	≥ 35 years	6.6	5.33 (4.49–6.33)*
Plurality	Single (Ref)	3.1	-
	Multiple	2.3	1.31 (0.81–2.12)
Gender	Male (Ref)	3.5	-
	Female	3.2	1.08 (0.94–1.25)


4.8.28 Trisomy 13

Definition: Trisomy 13, also called Patau's syndrome, is characterised by an additional chromosome 13.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 0.9 per cent (n = 82) had trisomy 13, of which 70.7 per cent were terminated before 20 weeks of gestation.

Trend: The incidence of trisomy 13 did not change significantly (p-value 0.664) from 1998 to 2009 (Figure 34).

Risk factors: Women greater than 35 years of age were almost twice as likely to have a baby with trisomy 13 as compared to women younger than 35 years of age. The risk of trisomy 13 did not vary with birth plurality and gender of the baby (Table 35).

Figure 34: Trisomy 13 per 1,000 pregnancies, 1998 to 2009

Table 35: Trisomy 13 by selected maternal and child characteristics, 2007–2009

Characteristic		Trisomy 13/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.2	-
womers age	≥ 35 years	0.4	1.91 (1.14–3.16)*
Plurality	Single (Ref)	0.3	-
Flurality	Multiple	0.1	2.35 (0.32–16.98)
Gender	Male (Ref)	0.3	-
Gender	Female	0.4	1.12 (0.72–1.74)

4.8.29 Trisomy 18

Definition: Trisomy 18, also called Edward's syndrome, is characterised by an additional chromosome 18.

Incidence: Of all the congenital anomaly cases reported from 2007 to 2009, 2.5 per cent (n = 238) had trisomy 18, of which 76.5 per cent were terminated before 20 weeks of gestation.

Trend: The incidence of trisomy 18 increased significantly (p-value 0.001) from 1998 to 2009 (Figure 35).

Risk factors: The risk of trisomy 18 in babies of mothers aged 35 years and older was 6.7 times the risk in babies of women younger than 35 years of age. Female babies were 36.0 per cent more likely to develop trisomy 18 than male babies. The risk of trisomy 18 did not vary by birth plurality (Table 36).

Figure 35: Trisomy 18 per 1,000 pregnancies, 1998 to 2009

Table 36: Trisomy 18 by selected maternal and child characteristics, 2007–2009

Characteristic		Trisomy 18/ 1,000 pregnancies	RR and 95 per cent CI
Mother's age	< 35 years (Ref)	0.3	-
	\geq 35 years	2.0	6.73 (4.82–9.39)*
Plurality	Single (Ref)	0.9	-
Flurality	Multiple	0.5	1.73 (0.64–4.66)
Gender	Male (Ref)	0.9	-
Genuer	Female	1.2	1.36 (1.050–1.76)*

Appendix A: Major congenital anomalies in Victoria, 2007–2009

The following figures refer to individual congenital anomalies, not cases. The codes are compatible with the British Paediatric Association (BPA) Classification of Diseases Supplement to ICD – 9th Revision. As any one case may have two or more conditions within a particular code range, the number of individual congenital anomalies may exceed the number of cases.

Defect	Number	N/1,000 pregnancies
Nervous system		
Anencephalus [¥] (7400*)	96	0.4
Craniorachischisis (7401*)	< 5	0.0
Iniencephaly (7402*)	< 5	0.0
Spina Bifida (741**)	114	0.5
Encephalocele (7420*)	33	0.2
Microcephalus (7421*)	61	0.3
Brain reduction (7422*)	178	0.8
Hydrocephalus (7423*)	194	0.9
Other specified anomalies of brain (74240–74299)	149	0.7
Hereditary and degenerative diseases (33000-33799)	21	0.1
Cerebral palsy (34300–34399)	7	0.0
Other disorders of CNS (3499*, 34000-34299)	0	0.0
Disorders of Peripheral NS (35000–35999)	18	0.1
Total	875	4.0
Eye		
Anophthalmos (7430*)	< 5	0.0
Microphthalmos (7431*)	20	0.1
Buphthalmos (7432*)	11	0.1
Other lens (74330–74331, 74333–74339)	< 5	0.0
Cataract (74332)	32	0.1
Other specified anomalies of eye (74340-74399)	45	0.2
Total	110	0.5

Defect	Number	N/1,000 pregnancies
Ear, face and neck		
Ear-affecting hearing (7440*)	21	0.1
Auditory canal (74400)	15	0.1
Absent auricle (74401)	< 5	0.0
Other specified anomalies of the ear (74402-74409)	5	0.0
Other ear (74410–74439)	74	0.3
Accessory auricle (74410–74419)	20	0.1
Microtia (74421)	16	0.1
Other ear (74420, 74422–74429)	36	0.2
Face and neck (74440–74499)	110	0.5
Deafness (389**)	32	0.1
Total	258	1.2
Cardiovascular system	I	
Common truncus (7450*)	19	0.1
Transposition of great vessels (7451*)	141	0.6
Tetralogy/Pentalogy of Fallot (7452*)	77	0.4
Common ventricle (7453*)	22	0.1
Ventricular septal defect (7454*)	673	3.1
Atrial septal defect (7455*)	346	1.6
Endocardial cushion (7456*)	93	0.4
Other specified anomalies of cardiac septal closure (74570-74599)	6	0.0
Cardiomyopathy (425**)	8	0.0
Conduction disorder (426**)	< 5	0.0
Pulmonary valve (7460*)	147	0.7
Atresia (74600)	26	0.1
Stenosis (74601)	111	0.5
Other (74602–74609)	10	0.0
Tricuspid atresia/stenosis (7461*)	100	0.5
Ebstein anomaly (7462*)	14	0.1
Aortic valve stenosis/insufficiency (74630-74649)	63	0.3
Mitral stenosis/insufficiency (74650–74669)	35	0.2
Hypoplastic left heart syndrome (7467*)	88	0.4
Other specified anomalies of heart (7468*)	160	0.7
Unspecified (7469*)	125	0.6
Patent ductus arteriosus (74701)	421	1.9
Coarctation of aorta (7471*)	98	0.4

Defect	Number	N/1,000 pregnancies
Other aorta (7472*)	76	0.3
Pulmonary artery (7473*)	137	0.6
Great veins (7474*)	54	0.2
Peripheral vascular (7476*)	9	0.0
Other specified anomalies of circulatory system (7478*)	16	0.1
Unspecified (7479*)	0	0.0
Total	2929	13.3
Respiratory system	I_	
Choanal atresia (7480*)	36	0.2
Other nose (7481*)	35	0.2
Larynx/trachea/bronchus (74820–74839)	139	0.6
Lung (74840–74869)	83	0.4
Other specified anomalies of respiratory system (74880–74899)	< 5	0.0
Total	294	1.3
Gastrointestinal tract		
Cleft palate (7490*)	166	0.8
Cleft lip (7491*)	94	0.4
Cleft lip and palate (7492*)	142	0.6
Oesophageal atresia/stenosis (7503*)	68	0.3
Other specified anomalies of upper ailmentary tract (75010–75029, 75040–75099)	193	0.9
Meckels diverticulum (7510*)	< 5	0.0
Small intestine atresia/stenosis (7511*)	61	0.3
Duodenal atresia/stenosis (75110)	38	0.2
Jejunal atresia/stenosis (75111)	13	0.1
lleal atresia/stenosis (75112)	6	0.0
Unspecified atresia/stenosis (75119)	< 5	0.0
Large intestine rectal anal atresia/stenosis (7512*)	73	0.3
Large intestine atresia/stenosis (75120)	< 5	0.0
Rectal atresia/stenosis (75121–75122)	< 5	0.0
Anal atresia/stenosis (75123–75124)	67	0.3
Hirschsprung's disease (7513*)	37	0.2
Intestinal fixation (7514*)	40	0.2
Other specified anomalies of intestine (75150-75199)	94	0.4
Other specified dentofacial anomalies (52400–57999)	44	0.2
Total	1013	4.6

Defect	Number	N/1,000 pregnancies
Urogenital system		programero
Ovaries/fallopian etc (75200–75219)	11	0.1
Uterus (75220–75239)	10	0.0
Cervix/vagina/external genitalia (7524*)	14	0.1
Undescended testes ¶ (7525*)	89	0.4
Hypospadias (75260, 75263–75265)	867	4.0
Epispadias (75261)	12	0.1
Chordee (75262)	57	0.3
Indeterminate sex (7527*)	27	0.1
Other specified anomalies of genital organs (7528*)	94	0.4
Unspecified (7529*)	< 5	0.0
Renal agenesis/dysgenesis (7530*)	141	0.6
Bilateral (75300)	32	0.1
Unilateral (75301)	109	0.5
Cystic kidney disease (7531*)	125	0.6
Polycystic (75311–75313)	35	0.2
Multicystic (75316)	87	0.4
Other (75310, 75314, 75318)	< 5	0.0
Obstructive defects renal pelvis/ureter (7532*)	994	4.5
Hydronephrosis (75320)	892	4.1
Other (75321–75329)	102	0.5
Other specified kidney disorders (7533*)	202	0.9
Other specified disorders of ureter (7534*)	29	0.1
Exstrophy of bladder (7535*)	< 5	0.0
Urethra bladder neck atresia/stenosis (7536*)	46	0.2
Urachus (7537*)	< 5	0.0
Other bladder/urethra (7538*)	28	0.1
Unspecified (7539*)	20	0.1
Other specified anomalies of genito-urinary system (59200-60899)	9	0.0
Total	2,782	12.7

Defect	Number	N/1,000 pregnancies
Musculoskeletal system		
Of skull, face and jaw (7540*)	40	0.2
Of sternocleidomastoid (7541*)	0	0.0
Of spine (7542*)	< 5	0.0
Congenital dislocation of hip (75430)	661	3.0
Other hip (75431–75432)	< 5	0.0
Genu recurvatum/bowing (7544*)	10	0.0
Of feet (75450–75479)	549	2.5
Other specified musculoskeletal anomalies (7548*)	7	0.0
Polydactyly (7550*)	303	1.4
Syndactyly (7551*)	97	0.4
Reduction deformities upper limb (7552*)	101	0.5
Reduction deformities lower limb (7553*)	64	0.3
Reduction deformities unspecified limb (7554*)	7	0.0
Other upper limb (7555*)	111	0.5
Other lower limb (7556*)	124	0.6
Arthrogryposis Multiplex Congenita (75580)	14	0.1
Other specified anomalies of unspecified limb (75581–75588)	16	0.1
Unspecified (7559*)	10	0.0
Skull, Face and Bones (7560*)	159	0.7
Craniosynostosis (75600)	78	0.4
Other (75601–75602, 75604–75609)	52	0.2
Pierre Robin Syndrome (75603)	29	0.1
Spine (7561*)	108	0.5
Ribs and sternum (75620–75639)	36	0.2
Chondrodystrophy (7564*)	34	0.2
Achondroplasia (75643)	12	0.1
Other dwarfing (75644)	8	0.0
Other (75645–75649)	13	0.1
Osteodystrophies (7565*)	38	0.2
Osteogenesis (75650)	14	0.1
Other (75651–75659)	24	0.1
Diaphragm (7566*)	92	0.4
Other (75660, 75662–75669)	< 5	0.0
Diaphragmatic Hernia (75661)	88	0.4

Defect	Number	N/1,000 pregnancies
Abdominal wall (7567*)	140	0.6
Exomphalos (75670)	80	0.4
Gastroschisis (75671)	51	0.2
Other (75672–75679)	9	0.0
Other specified of muscle/tendon/fascia (7568*)	17	0.1
Unspecified (7569*)	0	0.0
Total	2,744	12.5
Integumentary system		
Hereditary oedema (7570*)	< 5	0.0
Icthyosis congenita (7571*)	12	0.1
Dermatoglyphic anomalies (7572*)	0	0.0
Other specified anomalies skin (7573*)	130	0.6
Specified anomalies of hair (7574*)	0	0.0
Specified anomalies of nails (7575*)	< 5	0.0
Specified anomalies of breast (7576*)	< 5	0.0
Other specified anomalies of integument (7578*)	< 5	0.0
Unspecified (7579*)	< 5	0.0
Total	150	0.7
Chromosomal	· · · · ·	
Trisomy 21 (7580*)	740	3.4
Trisomy 13 (7581*)	82	0.4
Trisomy 18 (7582*)	238	1.1
Autosomal deletion (7583*)	73	0.3
Other autosomal (7585*)	116	0.5
Turner's Syndrome (7586*)	70	0.3
Klinefelter's Syndrome (7587*)	23	0.1
Other sex chromosomes (7588*)	42	0.2
Unspecified (7589*)	50	0.2
Total	1,434	6.5

Defect	Number	N/1,000 pregnancies
Neoplasms		
Malignant (14000–20899)	17	0.1
Benign (2–22999)	102	0.5
Haemangioma (22809)	12	0.1
Cystic hygroma (22819)	88	0.4
Other (21000–22799)	< 5	0.0
Uncertain behaviour (23500–23999)	30	0.1
Total	149	0.7
Metabolic/ endocrine/nutritional	· · · · · ·	
Congenital hypothyroidism (2439*)	84	0.4
Other endocrine glands (25000–25999)	15	0.1
Nutritional deficiencies (26000–26999)	< 5	0.0
Phenylketonuria (2701*)	27	0.1
Other disorders of amino-acid metabolism (27000, 27020–27099)	37	0.2
Of carbohydrate metabolism (271**)	12	0.1
Of lipid metabolism (272**)	8	0.0
Of plasma protein metabolism (273**)	< 5	0.0
Of mineral metabolism (275**)	9	0.0
Cystic fibrosis (2770*)	64	0.3
Other metabolism (27710–27799)	40	0.2
Of immunity (279**)	16	0.1
Total	316	1.4
Haematological	I	
Hereditary haemolytic anaemia (282**)	38	0.2
Other anaemias (28100, 28300–28599)	< 5	0.0
Coagulation defects (286**)	11	0.1
Other haemorrhagic conditions (28700–28999)	0	0.0
Total	50	0.2

Defect	Number	N/1,000 pregnancies
Others		
Spleen (7590*)	18	0.1
Adrenal gland (7591*)	10	0.0
Other endocrine gland (7592*)	17	0.1
Situs inversus (7593*)	17	0.1
Conjoined twins (7594*)	< 5	0.0
Tuberous sclerosus (7595*)	10	0.0
Harmartoses nec (7596*)	7	0.0
Multiple so described (7597*)	10	0.0
Other specified syndromes (7598*)	183	0.8
Unspecified (7599*)	42	0.2
Fetal alcohol syndrome (76076)	< 5	0.0
Maternal conditions (76079)	0	0.0
Congenital infection (77100–77129)	40	0.2
Toxoplasmosis (77121)	0	0.0
Cytomegalovirus (77119)	31	0.1
Other (77100, 77120-77199)	6	0.0
Hydrops fetalis (non-immune) (7780*)	100	0.5
Developmental delay (7834*)	0	0.0
Total	466	2.1

* Denotes any number from 0 to 9

Undescended testes in term babies is included in VCAR, but isolated cases have been excluded for the purposes of this report as a minor malformation. This figure refers to cases of undescended testes which are not isolated but occur with other defects.

¥ Anencephalus includes absence of brain, acrania, anencephaly and hemianencephaly. Denominators do not modify for sex specific conditions (e.g. undescended testes).

Appendix B: Excluded congenital anomalies

There has been variation in the list of exclusions between 1983 and 2002. Some excluded conditions may be included in this report if they were previously not excluded and occur with other congenital anomalies.

Abnormal palmar creases	Macroglossia (large tongue)
Accessory nipples	Meckel's diverticulum
Anal fissure	Meconium ileus
Balanced autosomal translocation (unless occurring with structural defects)	Mental retardations (unless occurring with a syndrome/ structural defect)
Birth injuries	Metatarsus varus
Birth marks (smaller than 4cm, not including giant naevus)	Micrognathia (unless severe)
Bowing of legs (unless severe)	Mongolian spots
Blocked tear ducts (dacrostenosis)	Occiput, flat/prominent
Brushfield spots	Patent ductus arteriosus (< 37 weeks)
Cephalhaematoma	Philtrum, long/short
Cleft gum	Plagiocephaly
Clicky hips	Pre-auricular sinus
Clinodactyly	Prominent forehead
Craniotabes (unless severe)	Protruding tongue
Dermatogplyphic abnormalities	Ptosis
Ear abnormalities (minor)	Retrognathia (unless severe)
Epicanthic folds	Rocker-bottom feet (prominent heels)
Gastro-oesophageal reflux	Sacral pits, dimples, sinuses
Haemangioma (< 4 cm wide)	Short sternum
Hernia – inguinal, umbilical	Simian creases
High-arched palate	Single umbilical artery/2 vessels in cord
Hydrocele	Skin folds/tags
Hypertelorism	Slanting eyes
Imperforate hymen	Small mouth
Laryngeal stridor	Laryngomalacia
Low slung/set ears	

Appendix C: Routine data items in the Victorian Congenital Anomalies Register

Maternal data: postcode, date of birth, method of prenatal diagnosis

Child/fetus data: hospital of birth, date of birth (or termination), sex, birth weight, plurality, rank, condition of birth (termination before 20 weeks, termination \geq 20 weeks, stillbirth, live birth), date of death (if applicable), BPA Codes for congenital defects, position code, source of notification

Other data items available from linkage to the Perinatal Morbidity Statistics Form (Victorian perinatal data collection):

Maternal items: UR number, local government area, region, country of birth, Aboriginality, discharge date and status, marital status, number of previous pregnancies, date of completion of last pregnancy, outcome of last pregnancy, maternal medical conditions, obstetric complications, indication(s) for operative delivery, complications of labour birth and postnatal, procedures and operations, type of labour, presentation, method of delivery

Child data items: APGAR, time to establish respiration, resuscitation methods, neonatal morbidity

Appendix D: Congenital anomalies by year, 1983–2009

	Total births, 20	Defects, 20	Defects before 20 weeks	N/1,000	
Year	weeks and later	weeks and later	(terminations)	pregnancies	Percentage
1983	60,628	1,653	< 5	27.3	2.7
1984	60,737	1,691	9	27.9	2.8
1985	61,189	1,591	18	26.2	2.6
1986	61,253	1,604	80	27.4	2.7
1987	61,566	1,620	55	27.1	2.7
1988	63,666	1,874	103	31.0	3.1
1989	64,255	1,930	123	31.8	3.2
1990	66,878	2,164	132	34.2	3.4
1991	65,248	2,235	140	36.3	3.6
1992	66,305	2,295	152	36.8	3.7
1993	64,737	2,250	203	37.7	3.8
1994	64,932	2,295	250	39.0	3.9
1995	63,717	2,444	257	42.2	4.2
1996	62,951	2,217	272	39.3	3.9
1997	62,308	2,306	297	41.5	4.2
1998	62,091	2,332	274	41.7	4.2
1999	62,690	2,555	294	45.2	4.5
2000	62,564	2,614	292	46.2	4.6
2001	62,149	2,394	308	43.2	4.3
2002	63,133	2,520	327	44.8	4.5
2003	63,552	2,690	356	47.6	4.8
2004	63,700	2,774	342	48.6	4.9
2005	66,654	2,500	339	42.3	4.2
2006	69,856	2,836	366	45.6	4.6
2007	72,474	3,013	364	46.3	4.6
2008	72,545	2,630	360	41.0	4.1
2009	73,264	2,664	414	41.7	4.2
Total	1,745,042	61,691	6,129	38.86	3.9

These figures may differ from the number of births presented elsewhere due to the inclusion of terminations of pregnancy for psychosocial reasons or congenital anomalies at greater than 20 weeks' gestation, which are excluded from some analyses in other CCOPMM reports.

Appendix E: Outcomes of selected major congenital anomalies, 2007–2009

Chromosomal anomalies*	Terminations < 20 weeks	Terminations ≥ 20 weeks	Still births [†]	Neonatal deaths [†]	Lived at least 28 days
Trisomy 21	475	49	8	< 5	204
Trisomy 13	58	18	< 5	< 5	< 5
Trisomy 18	182	30	12	7	7
Other selected major anomalies*		Terminations	Still births [†]	Neonatal deaths [†]	Lived at least 28 days
Anencephaly		92	< 5	6	0
Spina bifida		75	< 5	< 5	33
Encephalocele		24	< 5	0	9
All neural defects		185	5	9	42
Microcephalus		15	< 5	< 5	47
Hydrocephalus		85	6	10	93
Transposition of the great vessels		26	< 5	6	99
Tetralogy of fallot		8	< 5	6	59
Ventricular septal defect		48	12	14	599
Hypoplastic left heart syndrome		33	< 5	10	44
Coarctation of the aorta		5	< 5	< 5	89
Cleft palate		10	< 5	< 5	148
Cleft lip		12	0	< 5	79
Cleft lip and palate		32	< 5	5	100
Oesophageal atresia and/or stenosis		5	< 5	6	54
Small intestinal atresia and/or stenosis		< 5	< 5	< 5	51
Anorectal atresia and/or stenosis		12	< 5	< 5	50
Hypospadias	< 5		< 5	< 5	863
Renal agenesis and dysgenesis		41	< 5	6	92
Cystic kidney disease	32		< 5	6	86
Obstructive defects of renal pelvis	37		< 5	7	906
Developmental dysplasia of the hip	0		0	< 5	660
Limb reduction defects	49		< 5	< 5	86
Diaphragmatic hernia	15		< 5	8	63
Exomphalos	50		5	< 5	21
Gastroschisis	< 5		5	< 5	41

* Congenital anomaly can be isolated or can occur with other anomalies

† Excludes terminations

Definitions

Birth	Refers to both live births and stillbirths.
Birth plurality	Refers to the total number of births resulting from a single pregnancy. Singleton or Single refers to one birth resulting from a single pregnancy and multiple refers to more than one birth from a single pregnancy.
Confinements	These are the number of pregnancies resulting in at least one birth. Number of confinements are not equal number of births, for example, one confinement may result in two births (twins).
Congenital anomaly	Any abnormality of prenatal origin, either present following conception or occurring before the end of pregnancy. This includes structural, functional, genetic, chromosomal and biochemical abnormalities.
Congenital anomaly cases	Refers to the number of live born or stillborn babies or terminations at any gestation affected by at least one congenital anomaly.
Isolated congenital anomaly	Anomaly that is not related to any other condition and occurs as a single defect example isolated cleft lip.
Live birth	Complete expulsion or extraction from its mother of a baby of at least 20 weeks gestation or, if gestation is unknown, weighing at least 400 grams who, after being born, breathes or shows any evidence of life such as a heartbeat.
Low birth weight	Birth weight less than 2,500 grams.
Neonatal death	A death occurring within 28 days of live birth in an child whose gestation was at least 20 weeks or, if gestation is unknown, weighing at least 400 grams.
Parity	Number of pregnancies carried to a viable gestational age. A woman who has never carried a pregnancy beyond 20 weeks gestation is called nulliparous, a woman who has carried one pregnancy beyond 20 weeks is called primiparous and a woman who has carried two or more pregnancies beyond 20 weeks is called multiparous.
Perinatal death/mortality	A stillbirth or neonatal death.
Pregnancy	Includes live birth, stillbirth and termination of pregnancy at any gestation.
Stillbirth	Complete expulsion or extraction from its mother of a baby of at least 20 weeks gestation or, if the gestation is unknown, weighing at least 400 grams who did not, at any time after delivery, breathe or show any evidence of life such as a heartbeat.

References

- 1. Hilder L, Zhichao Z, Parker M, Jahan S, Chambers GM. Australia's mothers and babies 2012. Perinatal statistics series no. 30. Cat. no. PER 69. Canberra: AIHW, 2014
- Abeywardana S, Sullivan EA. Congenital anomalies in Australia 2002–2003. Birth anomalies series no. 3 Cat. no. PER 41. Sydney: AIHW National Perinatal Statistics Unit, 2008.
- 3. The International Clearinghouse for Birth Defects Surveillance and Research. Annual Report 2005 with data for 2003. International Centre on Birth Defects. Italy, 2006.
- 4. Riley M, Halliday J. Congenital malformations in Victoria 1983–1994, Perinatal Data Collection Unit, Victorian Government Department of Human Services, Melbourne, 1996.
- 5. Riley M, Halliday J. Birth defects in Victoria 1983–1998, Perinatal Data Collection Unit, Victorian Government Department of Human Services, Melbourne, 2000.
- 6. Riley M, Halliday J. Birth defects in Victoria 1999–2000, Perinatal Data Collection Unit, Victorian Government Department of Human Services, Melbourne, 2002.
- 7. Riley M, Halliday J. Birth defects in Victoria 2001–2002, Perinatal Data Collection Unit, Victorian Government Department of Human Services, Melbourne, 2004.
- 8. Riley M, Halliday J. Birth defects in Victoria 2003–2004, Perinatal Data Collection Unit, Victorian Government Department of Human Services, Melbourne, 2006.
- 9. Riley M, Halliday J. Birth defects in Victoria 2005–2006, Victorian Perinatal Data Collection Unit, Victorian Government Department of Human Services, Melbourne, 2008.
- 10. World Health Organization. Congenital anomalies. 2015. Accessed February 29, 2016. Available at: http://www.who.int/mediacentre/factsheets/fs370/en/
- World Health Organisation, Centers for Disease Control, International Clearinghouse for Birth Defects Surveillance and Research. Birth defects surveillance: a manual for programme managers. Geneva: World Health Organization, 2014.
- Victorian Perinatal Data Collection Unit. Victorian Perinatal Data Collection (VPDC) Manual version.
 3.0, 2013. Accessed 29 February 2016. Available at: https://www2.health.vic.gov.au/hospitals-and-health-services/quality-safety-service/consultative-councils/council-obstetric-paediatric-mortality/perinatal-data-collection
- 13. Lumley J, Palma S, Fischer M, Robertson H. The tip of the iceberg: A validation study of the Victorian Congenital Malformations/Birth Defects Register. Australian Paediatric Journal, 1988:24:244–6
- 14. Kilkenny M, Riley M, Lumley J. Follow-up validation study of the Victorian Congenital Malformations Register. Journal of Paediatric & Child Health, 1995;31:323–25.
- 15. Riley M, Phyland S, Halliday J. Validation study of the Victorian Birth Defects Register, Journal of Paediatric and Child Health, 2004:40:544–548.
- 16. Riley M, Howard J, Dale K, Palma S, Halliday J. Validating notifications of pregnancy terminations for birth defects before 20 weeks gestation, Health Information Management, 2001;30: No.2
- Davey MA, Sloan ML, Palma S, Riley M, King J. Methodological processes in validating and analysing the quality of population-based data: a case study using the Victorian Perinatal Data Collection. Health Information Management Journal 2013; 42(3):12.
- National Perinatal Epidemiology and Statistics Unit (NPESU). Australian Congenital Anomalies Monitoring System. Last updated November 2016. Available at: https://npesu.unsw.edu.au/datacollection/australian-congenital-anomalies-monitoring-system-acams
- Lancaster P & Pedisich E. Congenital malformations Australia 1981–1992. Birth defects series no. 1. Cat. no. AIHW 213. Canberra: AIHW, 1995.

- 20. Zhao Y, You J, Guthridge S. Burden of disease and injury in the Northern Territory, 1999–2003. Department of Health and Families. Darwin, 2009.
- Wen J, Jiang J, Ding C, Dai J, Liu Y, Xia Y, Liu J, Hu Z. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertility and sterility. 2012 Jun 30;97(6):1331-7.
- 22. Yan J, Huang G, Sun Y, Zhao X, Chen S, Zou S, Hao C, Quan S, Chen ZJ. Birth defects after assisted reproductive technologies in China: analysis of 15,405 offspring in seven centers (2004 to 2008). Fertility and sterility. 2011 Jan 31;95(1):458-60.
- 23. Setti PE, Moioli M, Smeraldi A, Cesaratto E, Menduni F, Livio S, Morenghi E, Patrizio P. Obstetric outcome and incidence of congenital anomalies in 2351 IVF/ICSI babies. Journal of assisted reproduction and genetics. 2016 Jun:1-7.
- 24. Gibson CS, Scott H, Scheil W. Birth defects in South Australia 2011. Adelaide. SA Birth Defects Register, Women's and Children's Health Network, 2015.
- 25. Bower C, Baynam G, Rudy E, Quick J, Rowley A, Watson L, Cosgrove P. Report of the Western Australian Register of Developmental Anomalies 1980–2014. Western Australian Register of Developmental Anomalies. November 2015.
- 26. Endo T, Johnston T, Ellerington J. Data quality and quality issues to be aware of when using the Queensland Perinatal Data Collection to estimate the prevalence of congenital anomalies at birth in Queensland. Health Statistics Unit, Queensland Health. Brisbane 2014.
- 27. Centre for Epidemiology and Research. New South Wales Mothers and Babies 2009. Sydney: NSW Ministry of Health, 2011 and Australian Capital Territory: Population Health Research Centre, ACT Health. Maternal and Perinatal Health in the ACT 2000–2004, ACT Government, Canberra ACT, 2007.

Health and Human Services